[1] SHUVO M B, AHOMMED R, REZA S, et al. CNL-UNet:a novel lightweight deep learning architecture for multimodal biomedical image segmentation with false output suppression[J]. Biomedical Signal Processing and Control, 2021, 70:102959. [2] RONNEBERGER O, FISCHER P, BROX T. U-Net:convolutional networks for biomedical image segmentation[EB/OL].[2023-04-02]. https://arxiv.org/abs/1505.04597. [3] 于文涛, 张俊华, 梅建华, 等. 脊柱MR图像自动分割方法的研究[J]. 计算机工程与应用, 2022, 58(22):203-209. YU W T, ZHANG J H, MEI J H, et al. Research on automatic segmentation method of spinal MR images[J]. Computer Engineering and Applications, 2022, 58(22):203-209. (in Chinese) [4] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++:redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(6):1856-1867. [5] ZHANG L R, YANG J L, LIU D, et al. Spine X-ray image segmentation based on transformer and adaptive optimized postprocessing[C]//Proceedings of the 2nd International Conference on Software Engineering and Artificial Intelligence. Washington D. C., USA:IEEE Press, 2022:88-92. [6] STRUDEL R, GARCIA R, LAPTEV I, et al. Segmenter:transformer for semantic segmentation[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA:IEEE Press, 2021:7262-7272. [7] 周静, 钟原, 李平, 等. 用于颈椎MRI分割的多尺度特征融合注意力网络模型[J]. 计算机工程, 2023, 49(10):298-304. ZHOU J, ZHONG Y, LI P, et al. Multi-scale feature fusion attention network model for cervical vertebrae MRI segmentation[J]. Computer Engineering, 2023, 49(10):298-304. (in Chinese) [8] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net:learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany:Springer, 2016:424-432. [9] LIU Z, SU Z H, WANG M, et al. Computerized characterization of spinal structures on MRI and clinical significance of 3D reconstruction of lumbosacral intervertebral foramen[J]. Pain Physician, 2022, 25(1):27-35. [10] LI W Q, TANG Y M, WANG Z Y, et al. Atrous residual interconnected encoder to attention decoder framework for vertebrae segmentation via 3D volumetric CT images[J]. Engineering Applications of Artificial Intelligence, 2022, 114:105102. [11] TAO R, LIU W Y, ZHENG G Y. Spine-transformers:vertebra labeling and segmentation in arbitrary field-of-view spine CTs via 3D transformers[J]. Medical Image Analysis, 2022, 75:102258. [12] LI T Y, WEI B Z, CONG J Y, et al. S3egANet:3D spinal structures segmentation via adversarial nets[J]. IEEE Access, 2020, 8:1892-1901. [13] 刘侠, 甘权, 李冰, 等. 融合加权随机森林的自动3D椎骨CT图像主动轮廓分割方法[J]. 光电工程, 2020, 47(12):37-48. LIU X, GAN Q, LI B, et al. Automatic 3D vertebrae CT image active contour segmentation method based on weighted random forest[J]. Opto-Electronic Engineering, 2020, 47(12):37-48. (in Chinese) [14] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023. [15] WOO S, PARK J, LEE J Y, et al. CBAM:convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Berlin, Germany:Springer, 2018:3-19. [16] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2021:13713-13722. [17] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2016:770-778. [18] LIANG M, HU X L. Recurrent convolutional neural network for object recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA:IEEE Press, 2015:3367-3375. [19] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C]//Proceedings of IEEE Winter Conference on Applications of Computer Vision. Washington D. C., USA:IEEE Press, 2018:1451-1460. [20] YAO J H, BURNS J E, MUNOZ H, et al. Detection of vertebral body fractures based on cortical shell unwrapping[C]//Proceedings of the 15th International Conference on Medical Image Computing and Computer Assisted Intervention. Berlin, Germany:Springer, 2012:509-516. [21] RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3):569-575. [22] MILLETARI F, NAVAB N, AHMADI S A. V-Net:fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Conference on 3D Vision. Washington D. C., USA:IEEE Press, 2016:565-571. [23] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net:a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18:203-211. [24] CAI S J, TIAN Y X, LUI H, et al. Dense-UNet:a novel multiphoton in vivo cellular image segmentation model based on a convolutional neural network[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(6):1275-1285. [25] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net:learning where to look for the pancreas[EB/OL].[2023-04-02].https://arxiv.org/pdf/1804.03999.pdf. [26] HATAMIZADEH A, TANG Y C, NATH V, et al. UNETR:transformers for 3D medical image segmentation[C]//Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision. Washington D. C., USA:IEEE Press, 2022:574-584. [27] SEITEL A, RASOULIAN A, ROHLING R, et al. Lumbar and thoracic spine segmentation using a statistical multi-object shape+pose model[M]//YAO J H, GLOCKER B, KLINDER T, et al. Recent advances in computational methods and clinical applications for spine imaging. Berlin, Germany:Springer, 2015:221-225. [28] QADRI S F, ZHAO Z Q, AI D N, et al. Vertebrae segmentation via stacked sparse autoencoder from computed tomography images[C]//Proceedings of the 11th International Conference on Digital Image Processing. Washington D. C., USA:IEEE Press, 2019:1206-1211. [29] LI B, LIU C, WU S Y, et al. Verte-Box:a novel convolutional neural network for fully automatic segmentation of vertebrae in CT image[J]. Tomography, 2022, 8(1):45-58. |