作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

计算机工程 ›› 2020, Vol. 46 ›› Issue (10): 188-192. doi: 10.19678/j.issn.1000-3428.0055640

• 移动互联与通信技术 • 上一篇    下一篇

基于深度学习的家庭基站下行链路功率分配

吕亚平1, 贾向东1,2, 路艺1, 叶佩文1   

  1. 1. 西北师范大学 计算机科学与工程学院, 兰州 730070;
    2. 南京邮电大学 江苏省无线通信重点实验室, 南京 210003
  • 收稿日期:2019-08-05 修回日期:2019-09-26 发布日期:2019-10-17
  • 作者简介:吕亚平(1994-),女,硕士研究生,主研方向为移动通信;贾向东,教授、博士;路艺、叶佩文,硕士研究生。
  • 基金资助:
    国家自然科学基金(61261015,61561043)。

Downlink Power Allocation of Home Base Station Based on Deep Learning

Lü Yaping1, JIA Xiangdong1,2, LU Yi1, YE Peiwen1   

  1. 1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China;
    2. Wireless Communication Key Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • Received:2019-08-05 Revised:2019-09-26 Published:2019-10-17

摘要: 为提高室内无线通信服务质量以满足用户需求,基于深度Q学习(DQL)算法进行家庭基站的下行链路功率分配,旨在最大化系统吞吐量。在办公区域密集部署家庭基站的系统模型中,将家庭基站的物理位置建模为泊松点过程,移动用户随机分布在各个位置。在此基础上,构建含有两层隐藏层的深度神经网络,优化网络的非线性,提高网络的拟合能力。仿真结果表明,DQL算法相较于贪婪算法和Q学习算法能有效提高系统吞吐量和收敛速度。

关键词: 家庭基站, 密集部署, 功率分配, 神经网络, 深度学习

Abstract: In order to improve the service quality of indoor wireless communication to meet user demand,the dowmlink power allocation of home base station based on Deep Q Learning (DQL) algorithm is carried out to maximize system throughput.In the system model of densely deploying home base stations in office areas,the physical location of home base stations is modeled as a Poisson point process,and mobile users are randomly distributed in each location.On this basis,a deep neural network with two hidden layers is constructed to optimize the nonlinearity of the network and improve its fitting ability.Simulation results show that DQL algorithm can effectively improve the system throughput and convergence speed compared with greedy algorithm and Q learning algorithm.

Key words: home base station, intensive deployment, power allocation, neural network, deep learning

中图分类号: