[1] 暴雨轩, 芦天亮, 杜彦辉.深度伪造视频检测技术综述[J].计算机科学, 2020, 47(9):289-298. BAO Y X, LU T L, DU Y H.Overview of DeepFake video detection technology[J].Computer Science, 2020, 47(9):289-298.(in Chinese) [2] MIRSKY Y, LEE W.The creation and detection of DeepFakes:a survey[J].ACM Computing Surveys, 2021, 54(1):1-41. [3] GÜERA D, DELP E J.DeepFake video detection using recurrent neural networks[C]//Proceedings of 2018 IEEE International Conference on Advanced Video and Signal Based Surveillance.Washington D.C., USA:IEEE Press, 2018:1-6. [4] LI Y, CHANG M C, LÜ S.In ictu oculi:exposing AI created fake videos by detecting eye blinking[C]//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security.Washington D.C., USA:IEEE Press, 2018:1-7. [5] DONAHUE J, ANNE HENDRICKS L, GUADARRAMA S, et al.Long-term recurrent convolutional networks for visual recognition and description[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2015:2625-2634. [6] 张怡暄, 李根, 曹纭, 等.基于帧间差异的人脸篡改视频检测方法[J].信息安全学报, 2020, 5(2):49-72. ZHANG Y X, LI G, CAO Y, et al.A method for detecting human-face-tampered videos based on interframe difference[J].Journal of Cyber Security, 2020, 5(2):49-72.(in Chinese) [7] 陈鹏, 梁涛, 刘锦, 等.融合全局时序和局部空间特征的伪造人脸视频检测方法[J].信息安全学报, 2020, 5(2):73-83. CHEN P, LIANG T, LIU J, et al.Forged facial video detection based on global temporal and local spatial feature[J].Journal of Cyber Security, 2020, 5(2):73-83.(in Chinese) [8] LI X, LANG Y, CHEN Y, et al.Sharp multiple instance learning for DeepFake video detection[C]//Proceedings of the 28th ACM International Conference on Multimedia.New York, USA:ACM Press, 2020:1864-1872. [9] TOLOSANA R, VERA-RODRIGUEZ R, FIERREZ J, et al.DeepFakes and beyond:a survey of face manipulation and fake detection[J].Information Fusion, 2020, 64:143-184. [10] YANG X, LI Y, LÜ S.Exposing deep fakes using inconsistent head poses[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2019:8261-8265. [11] AFCHAR D, NOZICK V, YAMAGISHI J, et al.Mesonet:a compact facial video forgery detection network[C]//Proceedings of 2018 IEEE International Workshop on Information Forensics and Security.Washington D.C., USA:IEEE Press, 2018:1-7. [12] LI Y, LÜ S.Exposing DeepFake videos by detecting face warping artifacts[EB/OL].[2020-12-26].https://arxiv.org/pdf/1811.00656.pdf. [13] NGUYEN H H, YAMAGISHI J, ECHIZEN I.Capsule-forensics:using capsule networks to detect forged images and videos[C]//Proceedings of 2019 IEEE International Conference on Acoustics, Speech and Signal Processing.Washington D.C., USA:IEEE Press, 2019:2307-2311. [14] ROSSLER A, COZZOLINO D, VERDOLIVA L, et al.FaceForensics++:learning to detect manipulated facial images[C]//Proceedings of IEEE/CVF International Conference on Computer Vision.Washington D.C., USA:IEEE Press, 2019:1-11. [15] BONETTINI N, CANNAS E D, MANDELLI S, et al.Video face manipulation detection through ensemble of CNNs[EB/OL].[2020-12-26].https://arxiv.org/pdf/2004. 07676.pdf. [16] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:770-778. [17] CHOLLET F.Xception:deep learning with depthwise separable convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2017:1251-1258. [18] WOO S, PARK J, LEE J Y, et al.CBAM:convolutional block attention module[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2018:3-19. [19] WEN Y, ZHANG K, LI Z, et al.A discriminative feature learning approach for deep face recognition[C]//Proceedings of European Conference on Computer Vision.Berlin, Germany:Springer, 2016:499-515. [20] HU T, QI H, HUANG Q, et al.See better before looking closer:weakly supervised data augmentation network for fine-grained visual classification[EB/OL].[2020-12-26].https://arxiv.org/pdf/1901.09891v2.pdf. [21] LI Y, YANG X, SUN P, et al.Celeb-DF:a large-scale challenging dataset for deepfake forensics[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2020:3207-3216. [22] ZHANG K, ZHANG Z, LI Z, et al.Joint face detection and alignment using multitask cascaded convolutional networks[J].IEEE Signal Processing Letters, 2016, 23(10):1499-1503. [23] DOLHANSKY B, BITTON J, PFLAUM B, et al.The deepfake detection challenge(DFDC) dataset[EB/OL].[2020-12-26].https://arxiv.org/pdf/2006.07397.pdf. [24] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].[2020-12-26].https://arxiv.org/pdf/1409.1556.pdf. [25] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the Inception architecture for computer vision[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Washington D.C., USA:IEEE Press, 2016:2818-2826. |