| 1 | 
																						 
											  ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//Proceedings of ECCV 2014. Berlin, Germany: Springer, 2014: 834-849. 
											 											 | 
										
																													
																						| 2 | 
																						 
											  BRANSON S, VAN HORN G, PERONA P, et al. Improved bird species recognition using pose normalized deep convolutional nets[C]//Proceedings of 2014 British Machine Vision Conference. Nottingham, UK: The British Machine Vision Association, 2014: 1-14. 
											 											 | 
										
																													
																						| 3 | 
																						 
											  LIN T Y, ROYCHOWDHURY A, MAJI S. Bilinear CNN models for fine-grained visual recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2015: 1449-1457. 
											 											 | 
										
																													
																						| 4 | 
																						 
											  闫子旭, 侯志强, 熊磊, 等. YOLOv3和双线性特征融合的细粒度图像分类. 中国图象图形学报, 2021, 26(4): 847- 856. 
											 											 | 
										
																													
																						 | 
																						 
											  YAN Z X, HOU Z Q, XIONG L, et al. Fine-grained classification based on bilinear feature fusion and YOLOv3. Journal of Image and Graphics, 2021, 26(4): 847- 856. 
											 											 | 
										
																													
																						| 5 | 
																						 
											  FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 4438-4446. 
											 											 | 
										
																													
																						| 6 | 
																						 
											  刘洋, 金忠. 一种结合非局部和多区域注意力机制的细粒度图像识别方法. 计算机科学, 2021, 48(1): 197- 203. 
											 											 | 
										
																													
																						 | 
																						 
											  LIU Y, JIN Z. Fine-grained image recognition method combining with non-local and multi-region attention mechanism. Computer Science, 2021, 48(1): 197- 203. 
											 											 | 
										
																													
																						| 7 | 
																						 
											  赵毅力, 徐丹. 联合语义部件的鸟类图像细粒度识别. 计算机辅助设计与图形学学报, 2018, 30(8): 1522- 1529. 
											 											 | 
										
																													
																						 | 
																						 
											  ZHAO Y L, XU D. Joint semantic parts for fine-grained bird images recognition. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(8): 1522- 1529. 
											 											 | 
										
																													
																						| 8 | 
																						 
											  李新叶, 王光陛. 基于卷积神经网络语义检测的细粒度鸟类识别. 科学技术与工程, 2018, 18(10): 240- 244.  
											 												 
																									doi: 10.3969/j.issn.1671-1815.2018.10.041    
																																															 											 | 
										
																													
																						 | 
																						 
											  LI X Y, WANG G B. Fine-grained bird recognition based on convolution neural network semantic detection. Science Technology and Engineering, 2018, 18(10): 240- 244.  
											 												 
																									doi: 10.3969/j.issn.1671-1815.2018.10.041    
																																															 											 | 
										
																													
																						| 9 | 
																						 
											  SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 2818-2826. 
											 											 | 
										
																													
																						| 10 | 
																						 
											  ZHENG H L, FU J L, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image recognition[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 5209-5217. 
											 											 | 
										
																													
																						| 11 | 
																						 
											  SUN M, YUAN Y C, ZHOU F, et al. Multi-attention multi-class constraint for fine-grained image recognition[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 834-850. 
											 											 | 
										
																													
																						| 12 | 
																						 
											 
											 											 | 
										
																													
																						| 13 | 
																						 
											  WANG Y M, MORARIU V I, DAVIS L S. Learning a discriminative filter bank within a CNN for fine-grained recognition[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 1-10. 
											 											 | 
										
																													
																						| 14 | 
																						 
											  GE W F, LIN X R, YU Y Z. Weakly supervised complementary parts models for fine-grained image classification from the bottom up[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 3029-3038. 
											 											 | 
										
																													
																						| 15 | 
																						 
											  CHEN Y E, BAI Y L, ZHANG W, et al. Destruction and construction learning for fine-grained image recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5157-5166. 
											 											 | 
										
																													
																						| 16 | 
																						 
											  LUO W, ZHANG H M, LI J, et al. Learning semantically enhanced feature for fine-grained image classification. IEEE Signal Processing Letters, 2020, 27, 1545- 1549.  
											 												 
																									doi: 10.1109/LSP.2020.3020227    
																																															 											 | 
										
																													
																						| 17 | 
																						 
											  KONG S, FOWLKES C. Low-rank bilinear pooling for fine-grained classification[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 365-374. 
											 											 | 
										
																													
																						| 18 | 
																						 
											  GAO Y, BEIJBOM O, ZHANG N, et al. Compact bilinear pooling[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 317-326. 
											 											 | 
										
																													
																						| 19 | 
																						 
											 
											 											 | 
										
																													
																						| 20 | 
																						 
											  WANG J Z, LI N Y, LUO Z M, et al. High-order-interaction for weakly supervised fine-grained visual categorization. Neurocomputing, 2021, 464, 27- 36.  
											 												 
																									doi: 10.1016/j.neucom.2021.08.108    
																																															 											 | 
										
																													
																						| 21 | 
																						 
											  CUI Y, ZHOU F, WANG J A, et al. Kernel pooling for convolutional neural networks[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 3049-3058. 
											 											 | 
										
																													
																						| 22 | 
																						 
											  ZHENG H L, FU J L, ZHA Z J, et al. Looking for the devil in the details: learning trilinear attention sampling network for fine-grained image recognition[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5007-5016. 
											 											 | 
										
																													
																						| 23 | 
																						 
											  陆鑫伟, 余鹏飞, 李海燕, 等. 基于注意力自身线性融合的弱监督细粒度图像分类算法. 计算机应用, 2021, 41(5): 1319- 1325. 
											 											 | 
										
																													
																						 | 
																						 
											  LU X W, YU P F, LI H Y, et al. Weakly supervised fine-grained image classification algorithm based on attention-attention bilinear pooling. Journal of Computer Applications, 2021, 41(5): 1319- 1325. 
											 											 | 
										
																													
																						| 24 | 
																						 
											  胡志伟, 杨华, 黄济民, 等. 基于注意力残差机制的细粒度番茄病害识别. 华南农业大学学报, 2019, 40(6): 124- 132. 
											 											 | 
										
																													
																						 | 
																						 
											  HU Z W, YANG H, HUANG J M, et al. Fine-grained tomato disease recognition based on attention residual mechanism. Journal of South China Agricultural University, 2019, 40(6): 124- 132. 
											 											 | 
										
																													
																						| 25 | 
																						 
											  ZHANG L B, HUANG S L, LIU W, et al. Learning a mixture of granularity-specific experts for fine-grained categorization[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 8330-8339. 
											 											 | 
										
																													
																						| 26 | 
																						 
											  JI J S, JIANG L F, LEI C X, et al. Learning two-level features for fine-grained image classification[C]//Proceedings of the 14th IEEE International Conference on Signal Processing. Washington D. C., USA: IEEE Press, 2018: 544-549. 
											 											 | 
										
																													
																						| 27 | 
																						 
											  DING Y, ZHOU Y Z, ZHU Y, et al. Selective sparse sampling for fine-grained image recognition[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2019: 6599-6608. 
											 											 | 
										
																													
																						| 28 | 
																						 
											  LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2017: 2999-3007. 
											 											 | 
										
																													
																						| 29 | 
																						 
											  毛昊, 李新利, 王孝伟, 等. 基于多类别Focal Loss损失函数的变电站场景图像语义分割研究. 华北电力大学学报(自然科学版), 2022, 49(5): 84- 92. 
											 											 | 
										
																													
																						 | 
																						 
											  MAO H, LI X L, WANG X W, et al. Research on semantic segmentation of substation scene image based on multi-class Focal Loss function. Journal of North China Electric Power University(Natural Science Edition), 2022, 49(5): 84- 92. 
											 											 | 
										
																													
																						| 30 | 
																						 
											  WEN Y D, ZHANG K P, LI Z F, et al. A discriminative feature learning approach for deep face recognition[C]//Proceedings of 2016 ECCV European Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2016: 499-515. 
											 											 |