1 |
杨才东, 李承阳, 李忠博, 等. 深度学习的图像超分辨率重建技术综述. 计算机科学与探索, 2022, 16 (9): 1990- 2010.
|
|
YANG C D, LI C Y, LI Z B, et al. Review of image super-resolution reconstruction algorithms based on deep learning. Journal of Frontiers of Computer Science and Technology, 2022, 16 (9): 1990- 2010.
|
2 |
黄健, 赵元元, 郭苹, 等. 深度学习的单幅图像超分辨率重建方法综述. 计算机工程与应用, 2021, 57 (18): 13- 23.
doi: 10.3778/j.issn.1002-8331.2102-0257
|
|
HUANG J, ZHAO Y Y, GUO P, et al. Survey of single image super-resolution based on deep learning. Computer Engineering and Applications, 2021, 57 (18): 13- 23.
doi: 10.3778/j.issn.1002-8331.2102-0257
|
3 |
DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (2): 295- 307.
doi: 10.1109/TPAMI.2015.2439281
|
4 |
张晨晨, 王帅, 王文一, 等. 针对人脸识别卷积神经网络的局部背景区域对抗攻击. 光电工程, 2023, 50 (1): 220266.
doi: 10.12086/oee.2023.220266
|
|
ZHANG C C, WANG S, WANG W Y, et al. Adversarial background attacks in a limited area for CNN based face recognition. Opto-Electronic Engineering, 2023, 50 (1): 220266.
doi: 10.12086/oee.2023.220266
|
5 |
|
6 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 770-778.
|
7 |
ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image restoration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (7): 2480- 2495.
doi: 10.1109/TPAMI.2020.2968521
|
8 |
KIM J W, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 1-10.
|
9 |
LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D. C., USA: IEEE Press, 2017: 1132-1140.
|
10 |
LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 1-10.
|
11 |
王云涛, 赵蔺, 刘李漫, 等. 基于组-信息蒸馏残差网络的轻量级图像超分辨率重建. 自动化学报, 2024, 50 (10): 1- 16.
|
|
WANG Y T, ZHAO L, LIU L M, et al. G-IDRN: an group-information distillation residual network for lightweight image super-resolution. Acta Automatica Sinica, 2024, 50 (10): 1- 16.
|
12 |
MADAAN D, SHIN J, HWANG S J. Adversarial neural pruning with latent vulnerability suppression[C]//Proceedings of International Conference on Machine Learning. New York, USA: [s. n], 2012: 1-10.
|
13 |
|
14 |
WANG Z, WOHLWEND J, LEI T. Structured pruning of large language models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). New York, USA: [s. n.], 2020: 6151-6162.
|
15 |
ZHANG Y, XIANG T, HOSPEDALES T M, et al. Deep mutual learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 4320-4328.
|
16 |
|
17 |
XU Z, HSU Y C, HUANG J W. Training shallow and thin networks for acceleration via knowledge distillation with conditional adversarial networks[EB/OL]. [2023-08-05]. https://arxiv.org/pdf/1709.00513.
|
18 |
LI Y C, CAO J J, LI Z T, et al. Lightweight single image super-resolution with dense connection distillation network. ACM Transactions on Multimedia Computing, Communications, and Applications, 2021, 17 (1): 1- 17.
doi: 10.1145/3414838
|
19 |
HUI Z, WANG X M, GAO X B. Fast and accurate single image super-resolution via information distillation network[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 723-731.
|
20 |
LIU J, TANG J, WU G S. Residual feature distillation network for lightweight image super-resolution[C]//Proceedings of Europe Conference on Computer Vision. Berlin, Germany: Springer, 2020: 41-55.
|
21 |
LI Z Y, LIU Y Q, CHEN X Y, et al. Blueprint separable residual network for efficient image super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2022: 832-842.
|
22 |
KIM J W, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2016: 1637-1645.
|
23 |
TAI Y, YANG J, LIU X M. Image super-resolution via deep recursive residual network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 2790-2798.
|
24 |
BREIMAN L. Bagging predictors. Machine Learning, 1996, 24 (2): 123- 140.
URL
|
25 |
LIU P, HAN S Z, MENG Z B, et al. Facial expression recognition via a boosted deep belief network[C]//Proceedings of Conference on Computer Vision & Pattern Recognition. Washington D. C., USA: IEEE Press, 2014: 1-10.
|
26 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1-9.
|
27 |
SOCHER R, HUVAL B, BHAT B, et al. Convolutional-recursive deep learning for 3D object classification[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2012: 656-664.
|
28 |
LIANG M, HU X L. Recurrent convolutional neural network for object recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 3367-3375.
|
29 |
TIMOFTE R, AGUSTSSON E, COOL L V, et al. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D. C., USA: IEEE Press, 2017: 1122-1131.
|
30 |
|
31 |
ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin, Germany: Springer, 2010: 711-730.
|
32 |
MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings the 8th IEEE International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2001: 416-423.
|
33 |
HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 5197-5206.
|
34 |
|
35 |
CHU X, ZHANG B, MA H, et al. Fast, accurate and lightweight super-resolution with neural architecture search[C]//Proceedings of the 25th International Conference on Pattern Recognition(ICPR). Washington D. C., USA: IEEE Press, 2021: 59-64.
|
36 |
ZHAO H, KONG X, HE J, et al. Efficient image super-resolution using pixel attention[C]//Proceedings of Europe Conference on Computer Vision. Berlin, Germany: Springer, 2020: 56-72.
|
37 |
KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Washington D. C., USA: IEEE Press, 2022: 765-775.
|