1 |
MALEH Y , QASMAOUI Y , EL GHOLAMI K , et al. A comprehensive survey on SDN security: threats, mitigations, and future directions. Journal of Reliable Intelligent Environments, 2023, 9 (2): 201- 239.
doi: 10.1007/s40860-022-00171-8
|
2 |
曹健, 王兴伟, 黄敏, 等. 一种工业物联网多路径可靠路由机制. 小型微型计算机系统, 2023, 44 (4): 862- 867.
|
|
CAO J , WANG X W , HUANG M , et al. Multi-path reliability routing mechanism for industrial Internet of Things. Journal of Chinese Computer Systems, 2023, 44 (4): 862- 867.
|
3 |
CONTI M, GANGWAL A, GAUR M S. A comprehensive and effective mechanism for DDoS detection in SDN[C]//Proceedings of the 13th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). Washington D.C., USA: IEEE Press, 2017: 1-8.
|
4 |
徐建峰, 王利明, 徐震. 软件定义网络中资源消耗型攻击及防御综述. 信息安全学报, 2020, 5 (4): 72- 95.
|
|
XU J F , WANG L M , XU Z . Survey on resource consumption attacks and defenses in software-defined networking. Journal of Cyber Security, 2020, 5 (4): 72- 95.
|
5 |
|
6 |
VISHNOI A, PODDAR R, MANN V, et al. Effective switch memory management in OpenFlow networks[C]//Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems. New York, USA: ACM Press, 2014: 177-188.
|
7 |
KANDOIR, ANTIKAINEN M. Denial-of-service attacks in OpenFlow SDN networks[C]//Proceedings of the IFIP/IEEE International Symposium on Integrated Network Management (IM). Washington D.C., USA: IEEE Press, 2015: 1322-1326.
|
8 |
陈兴蜀, 滑强, 王毅桐, 等. 云环境下SDN网络低速率DDoS攻击的研究. 通信学报, 2019, 40 (6): 210- 222.
|
|
CHEN X S , HUA Q , WANG Y T , et al. Research on low-rate DDoS attack of SDN network in cloud environment. Journal on Communications, 2019, 40 (6): 210- 222.
|
9 |
徐玉华, 孙知信. 软件定义网络中的异常流量检测研究进展. 软件学报, 2020, 31 (1): 183- 207.
|
|
XU Y H , SUN Z X . Research development of abnormal traffic detection in software defined networking. Journal of Software, 2020, 31 (1): 183- 207.
|
10 |
DENG A L , HOOI B . Graph neural network-based anomaly detection in multivariate time series. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35 (5): 4027- 4035.
doi: 10.1609/aaai.v35i5.16523
|
11 |
ZHENG J W, LI D G. GCN-TC: combining trace graph with statistical features for network traffic classification[C]//Proceedings of the 2019 IEEE International Conference on Communications (ICC). Washington D.C., USA: IEEE Press, 2019: 1-6.
|
12 |
NAGARAJ K, STARKE A, MCNAIR J. GLASS: a graph learning approach for software defined network based smart grid DDoS security[C]//Proceedings of the IEEE International Conference on Communications. Washington D.C., USA: IEEE Press, 2021: 1-6.
|
13 |
CAO Y Y , JIANG H , DENG Y C , et al. Detecting and mitigating DDoS attacks in SDN using spatial-temporal graph convolutional network. IEEE Transactions on Dependable and Secure Computing, 2021, 19 (6): 3855- 3872.
|
14 |
WANG K X , CUI Y H , QIAN Q , et al. USAGE: uncertain flow graph and spatio-temporal graph convolutional network-based saturation attack detection method. Journal of Network and Computer Applications, 2023, 219, 103722.
doi: 10.1016/j.jnca.2023.103722
|
15 |
DU R Y , HUANG M H , LIU F L . Multi-classification algorithm based on graph convolutional neural network for intrusion detection. Signal, Image and Video Processing, 2025, 19 (6): 493.
doi: 10.1007/s11760-025-04083-x
|
16 |
SUN B Y, YANG W Y, YAN M Q, et al. An encrypted traffic classification method combining graph convolutional network and autoencoder[C]//Proceedings of the 39th IEEE International Performance Computing and Communications Conference (IPCCC). Washington D.C., USA: IEEE Press, 2020: 1-8.
|
17 |
RAN L Y , CUI Y H , GUO C , et al. Defending saturation attacks on SDN controller: a confusable instance analysis-based algorithm. Computer Networks, 2022, 213, 109098.
doi: 10.1016/j.comnet.2022.109098
|
18 |
XIAO M , CUI Y H , QIAN Q , et al. KIND: a novel image-mutual-information-based decision fusion method for saturation attack detection in SD-IoT. IEEE Internet of Things Journal, 2022, 9 (23): 23750- 23771.
doi: 10.1109/JIOT.2022.3190269
|
19 |
AHALAWAT A , BABU K S , TURUK A K , et al. A low-rate DDoS detection and mitigation for SDN using Renyi entropy with packet drop. Journal of Information Security and Applications, 2022, 68, 103212.
doi: 10.1016/j.jisa.2022.103212
|
20 |
ASSIS M V O , CARVALHO L F , LLORET J , et al. A GRU deep learning system against attacks in software defined networks. Journal of Network and Computer Applications, 2021, 177, 102942.
doi: 10.1016/j.jnca.2020.102942
|
21 |
SAID ELSAYED M, LE-KHAC N A, DEV S, et al. Network anomaly detection using LSTM based autoencoder[C]//Proceedings of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks. New York, USA: ACM Press, 2020: 37-45.
|
22 |
KALKAN K , ALTAY L , GUR G , et al. JESS: joint entropy-based DDoS defense scheme in SDN. IEEE Journal on Selected Areas in Communications, 2018, 36 (10): 2358- 2372.
doi: 10.1109/JSAC.2018.2869997
|
23 |
LI Z Y , XING W J , KHAMAISEH S , et al. Detecting saturation attacks based on self-similarity of OpenFlow traffic. IEEE Transactions on Network and Service Management, 2019, 17 (1): 607- 621.
|
24 |
|
25 |
ZHOU Y D , LI H , CHEN K Y , et al. Raze policy conflicts in SDN. Journal of Network and Computer Applications, 2022, 199, 103307.
|
26 |
LEI K , LIN G J , ZHANG M M , et al. Measuring the consistency between data and control plane in SDN. ACM Transactions on Networking, 2022, 31 (2): 511- 525.
|
27 |
农黄武, 黄传河, 黄晓鹏. 基于SDN的胖树数据中心网络的多路径路由算法. 计算机科学, 2016, 43 (6): 32-34, 76.
|
|
NONG H W , HUANG C H , HUANG X P . SDN-based multipath routing algorithm for fat-tree data center networks. Computer Science, 2016, 43 (6): 32-34, 76.
|
28 |
CUI Y H , YAN L S , LI S F , et al. SD-anti-DDoS: fast and efficient DDoS defense in software-defined networks. Journal of Network and Computer Applications, 2016, 68, 65- 79.
|
29 |
PENG J C , CUI Y H , QIAN Q , et al. ADVICE: towards adaptive scheduling for data collection and DDoS detection in SDN. Journal of Information Security and Applications, 2021, 63, 103017.
|
30 |
|
31 |
ZHAO L , SONG Y J , ZHANG C , et al. T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 2019, 21 (9): 3848- 3858.
|