Research Hotspots and Reviews
SUN Lijun, MENG Fanjun, XU Xingjian
In the context of ongoing advancements in educational informatization, constructing precise and efficient curriculum knowledge graphs has become key to promoting personalized education development. As a structured knowledge representation model, curriculum knowledge graphs reveal complex relations between curriculum content and learning objectives to optimize the allocation of educational resources, and tailoring personalized learning paths for learners. This survey presents a discussion around the techniques used to construct curriculum knowledge graphs, starting with an explanation of the basic concepts; intrinsic connections; and significant differences among general, educational, and curriculum knowledge graphs. It then delves into the key technologies used for building curriculum knowledge graphs, covering aspects such as curriculum ontology design, entity extraction, and relation extraction, and provides a detailed analysis and summary of their evolution, key features, and limitations. Furthermore, it explores the application value of curriculum knowledge graphs in scenarios such as learning resource recommendation, learner behavior profile and modeling, and multimodal curriculum knowledge graph construction. Finally, it focuses on the challenges in constructing curriculum knowledge graphs, such as data diversity and heterogeneity, difficulties in quality evaluation, and the lack of cross-curriculum integration, and provides future-oriented insights based on cutting-edge technologies such as deep learning and Large Language Models (LLMs).