| 1 | YUNIARTI A, SUCIATI N. A review of deep learning techniques for 3D reconstruction of 2D images[C]//Proceedings of the 12th International Conference on Information & Communication Technology and System. Washington D. C., USA: IEEE Press, 2019: 327-331. | 
																													
																						| 2 | MILZ S, ARBEITER G, WITT C, et al. Visual SLAM for automated driving: exploring the applications of deep learning[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Washington D. C., USA: IEEE Press, 2018: 247-257. | 
																													
																						| 3 | KHAN U, YASIN A, ABID M, et al. A methodological review of 3D reconstruction techniques in tomographic imaging. Journal of Medical Systems, 2018, 42 (10): 190.  doi: 10.1007/s10916-018-1042-2
 | 
																													
																						| 4 | SRA M, GARRIDO-JURADO S, SCHMANDT C, et al. Procedurally generated virtual reality from 3D reconstructed physical space[C]//Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. New York, USA: ACM Press, 2016: 191-200. | 
																													
																						| 5 | CHOY C B, XU D F, GWAK J, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[EB/OL]. [2023-07-05]. https://arxiv.org/abs/1604.00449 . | 
																													
																						| 6 | XU Q G, WANG W Y, CEYLAN D, et al. Disn: deep implicit surface network for high-quality single-view 3D reconstruction[EB/OL]. [2023-07-05]. http://arxiv.org/abs/1905.10711v5 . | 
																													
																						| 7 | GENOVA K, COLE F, SUD A, et al. Local deep implicit functions for 3D shape[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2020: 4857-4866. | 
																													
																						| 8 | CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 5939-5948. | 
																													
																						| 9 | TANCIK M, SRINIVASAN P P, MILDENHALL B, et al. Fourier features let networks learn high frequency functions in low dimensional domains[EB/OL]. [2023-07-05]. http://arxiv.org/abs/2006.10739v1 . | 
																													
																						| 10 | MURTAGH F. Multilayer perceptrons for classification and regression. Neurocomputing, 1991, 2 (5/6): 183- 197. | 
																													
																						| 11 | 范文卓, 吴涛, 许俊平, 等. 基于多分辨率特征融合的任意尺度图像超分辨率重建. 计算机工程, 2023, 49 (9): 217- 225.  URL
 | 
																													
																						|  | FAN W Z, WU T, XU J P, et al. Super-resolution reconstruction of arbitrary scale images based on multi-resolution feature fusion. Computer Engineering, 2023, 49 (9): 217- 225.  URL
 | 
																													
																						| 12 | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[EB/OL]. [2023-07-05]. https://arxiv.org/abs/2003.08934 . | 
																													
																						| 13 | ZHU F, GUO S, SONG L, et al. Deep review and analysis of recent NeRFs. APSIPA Transactions on Signal and Information Processing, 2023, 12 (1): 1- 15. | 
																													
																						| 14 | WANG P, LIU Y, CHEN Z X, et al. F2-NeRF: fast neural radiance field training with free camera trajectories[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2023: 4150-4159. | 
																													
																						| 15 | MÜLLER T, EVANS A, SCHIED C, et al. Instant neural graphics primitives with a multiresolution hash encoding. ACM Transactions on Graphics, 2022, 41 (4): 1- 15. | 
																													
																						| 16 | YU A, YE V, TANCIK M, et al. pixelNeRF: neural radiance fields from one or few images[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2021: 4578-4587. | 
																													
																						| 17 | XU Q G, XU Z X, PHILIP J, et al. Point-NeRF: point-based neural radiance fields[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 5438-5448. | 
																													
																						| 18 | BARRON J T, MILDENHALL B, TANCIK M, et al. Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields[C]//Proceedings of IEEE/CVF International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 5855-5864. | 
																													
																						| 19 | STANLEY K O. Compositional pattern producing networks: a novel abstraction of development. Genetic Programming and Evolvable Machines, 2007, 8 (2): 131- 162.  doi: 10.1007/s10710-007-9028-8
 | 
																													
																						| 20 | KAJIYA J T, VON HERZEN B P. Ray tracing volume densities. ACM SIGGRAPH Computer Graphics, 1984, 18 (3): 165- 174.  doi: 10.1145/964965.808594
 | 
																													
																						| 21 | SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2016: 4104-4113. | 
																													
																						| 22 | GAUTHIER A, FAURY R, LEVALLOIS J, et al. MIPNet. ACM Transactions on Graphics, 2022, 41 (6): 1- 12. | 
																													
																						| 23 |  | 
																													
																						| 24 | KAJIYA J T. The rendering equation[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York, USA: ACM Press, 1986: 143-150. | 
																													
																						| 25 | WU L F, CAI G Y, ZHAO S, et al. Analytic spherical harmonic gradients for real-time rendering with many polygonal area lights. ACM Transactions on Graphics, 2020, 39 (4): 1- 14. | 
																													
																						| 26 | HUYNH-THU Q, GHANBARI M. Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 2008, 44 (13): 800.  doi: 10.1049/el:20080522
 | 
																													
																						| 27 | 惠子薇, 何坤, 冯犇, 等. 基于视觉特性的图像质量评价. 计算机工程, 2023, 49 (7): 189- 195.  URL
 | 
																													
																						|  | HUI Z W, HE K, FENG B, et al. Image quality assessment based on visual characteristics. Computer Engineering, 2023, 49 (7): 189- 195.  URL
 | 
																													
																						| 28 | BAKUROV I, BUZZELLI M, SCHETTINI R, et al. Structural Similarity Index (SSIM) revisited: a data-driven approach. Expert Systems with Applications, 2022, 189, 116087. | 
																													
																						| 29 | ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 586-595. |