1 |
LI Y , IBANEZ-GUZMAN J . Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 2020, 37 (4): 50- 61.
doi: 10.1109/MSP.2020.2973615
|
2 |
AHMED S M, TAN Y Z, CHEW C M, et al. Edge and corner detection for unorganized 3D point clouds with application to robotic welding[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York, USA: ACM Press, 2018: 7350-7355.
|
3 |
RAHMAN M M , TAN Y H , XUE J , et al. Notice of violation of IEEE publication principles: recent advances in 3D object detection in the era of deep neural networks: a survey. IEEE Transactions on Image Processing, 2020, 29, 2947- 2962.
doi: 10.1109/TIP.2019.2955239
|
4 |
张瑞菊, 周欣, 赵江洪, 等. 一种古建筑点云数据的语义分割算法. 武汉大学学报(信息科学版), 2020, 45 (5): 753- 759.
|
|
ZHANG R J , ZHOU X , ZHAO J H , et al. A semantic segmentation algorithm of ancient building's point cloud data. Geomatics and Information Science of Wuhan University, 2020, 45 (5): 753- 759.
|
5 |
MATURANA D, SCHERER S, MATURANA D, et al. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York, USA: ACM Press, 2015: 922-928.
|
6 |
SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Washington D. C., USA: IEEE Press, 2015: 945-953.
|
7 |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2017: 652-660.
|
8 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[EB/OL]. [2023-10-12]. http://arxiv.org/abs/1706.02413.
|
9 |
YAN X, ZHENG C D, LI Z, et al. PointASNL: robust point clouds processing using nonlocal neural networks with adaptive sampling[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1-10.
|
10 |
LI J X, CHEN B M, LEE G H. SO-Net: self-organizing network for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2018: 9397-9406.
|
11 |
WANG Y , SUN Y B , LIU Z W , et al. Dynamic graph CNN for learning on point clouds. ACM Transactions on Graphics, 2019, 38 (5): 1- 12.
|
12 |
|
13 |
LIN Z H, HUANG S Y, WANG Y F. Convolution in the cloud: learning deformable kernels in 3D graph convolution networks for point cloud analysis[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2020: 1800-1809.
|
14 |
|
15 |
任欢, 王旭光. 注意力机制综述. 计算机应用, 2021, 41 (S1): 1- 6.
|
|
REN H , WANG X G . Review of attention mechanism. Journal of Computer Applications, 2021, 41 (S1): 1- 6.
|
16 |
|
17 |
WU Z R, SONG S R, KHOSLA A, et al. 3D ShapeNets: a deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington D. C., USA: IEEE Press, 2015: 1912-1920.
|
18 |
XU Y F, FAN T Q, XU M Y, et al. SpiderCNN: deep learning on point sets with parameterized convolutional filters[C]//Proceedings of European Conference on Computer Vision (ECCV). New York, USA: ACM Press, 2018: 90-105.
|
19 |
|
20 |
CHENG S L , CHEN X W , HE X W , et al. PRA-Net: point relation-aware network for 3D point cloud analysis. IEEE Transactions on Image Processing, 2021, 30, 4436- 4448.
doi: 10.1109/TIP.2021.3072214
|
21 |
GAO Y B , LIU X B , LI J , et al. LFT-net: local feature transformer network for point clouds analysis. IEEE Transactions on Intelligent Transportation Systems, 2022, 24 (2): 1- 11.
|
22 |
田钰杰, 管有庆, 龚锐. 一种鲁棒的多特征点云分类分割深度神经网络. 计算机工程, 2021, 47 (11): 234- 240.
doi: 10.19678/j.issn.1000-3428.0060004
|
|
TIAN Y J , GUAN Y Q , GONG R . A robust deep neural network for multi-feature point cloud classification and segmentation. Computer Engineering, 2021, 47 (11): 234- 240.
doi: 10.19678/j.issn.1000-3428.0060004
|
23 |
WIJAYA K T , PAEK D H , KONG S H . Advanced feature learning on point clouds using multi-resolution features and learnable pooling. Remote Sensing, 2024, 16 (11): 1835.
doi: 10.3390/rs16111835
|
24 |
XIE Z Y , CHEN J Z , PENG B . Point clouds learning with attention-based graph convolution networks. Neurocomputing, 2020, 402, 245- 255.
doi: 10.1016/j.neucom.2020.03.086
|
25 |
|
26 |
YI L , KIM V G , CEYLAN D , et al. A scalable active framework for region annotation in 3D shape collections. ACM Transactions on Graphics, 2016, 35 (6): 1- 12.
|