1 |
张晓凯, 郭道省, 张邦宁. 空天地一体化网络研究现状与新技术的应用展望. 天地一体化信息网络, 2021 (4): 19- 26.
|
|
ZHANG X K , GUO D X , ZHANG B N . Research status of space-air-ground integrated network and application prospects of new technologies. Space-Integrated-Ground Information Networks, 2021 (4): 19- 26.
|
2 |
郑爽, 张兴, 王文博. 低轨卫星通信网络路由技术综述. 天地一体化信息网络, 2022 (3): 97- 105.
|
|
ZHENG S , ZHANG X , WANG W B . Survey of low earth orbit satellite communication network routing technology. Space-Integrated-Ground Information Networks, 2022 (3): 97- 105.
|
3 |
高新成, 张宣, 樊本航, 等. 基于改进的CNN-Transformer加密流量分类方法. 吉林大学学报(理学版), 2024, 62 (3): 683- 690.
|
|
GAO X C , ZHANG X , FAN B H , et al. Improved CNN-Transformer based encrypted traffic classification method. Journal of Jilin University (Science Edition), 2024, 62 (3): 683- 690.
|
4 |
MADHUKAR A, WILLIAMSON C. A longitudinal study of P2P traffic classification[C]//Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and Simulation. Washington D.C., USA: IEEE Press, 2006: 179-188.
|
5 |
MOORE A W , PAPAGIANNAKI K . Toward the accurate identification of network applications. Berlin, Germany: Springer, 2005.
|
6 |
SEN S, SPATSCHECK O, WANG D M, et al. Accurate, scalable in-network identification of P2P traffic using application signatures[C]//Proceedings of the 13th International Conference on World Wide Web. New York, USA: ACM Press, 2004: 512-521.
|
7 |
李腾. SDN中基于机器学习的网络流量分类研究[D]. 青岛: 青岛理工大学, 2023.
|
|
LI T. Research on network traffic classification based on machine learning in SDN[D]. Qingdao: Qingdao University of Technology, 2023. (in Chinese)
|
8 |
纪守领, 杜天宇, 邓水光, 等. 深度学习模型鲁棒性研究综述. 计算机学报, 2022, 45 (1): 190- 206.
|
|
JI S L , DU T Y , DENG S G , et al. Robustness certification research on deep learning models: a survey. Chinese Journal of Computers, 2022, 45 (1): 190- 206.
|
9 |
于治平, 刘彩霞, 刘树新, 等. 基于机器学习的网络流量分类综述. 信息工程大学学报, 2023, 24 (4): 447- 453.
doi: 10.3969/j.issn.1671-0673.2023.04.009
|
|
YU Z P , LIU C X , LIU S X , et al. Overview of network traffic classification based on machine learning. Journal of Information Engineering University, 2023, 24 (4): 447- 453.
doi: 10.3969/j.issn.1671-0673.2023.04.009
|
10 |
郭益民. 基于深度学习的Android恶意应用网络流量检测方法[D]. 上海: 上海交通大学, 2020.
|
|
GUO Y M. Network traffic detection method of Android malicious application based on deep learning[D]. Shanghai: Shanghai Jiao Tong University, 2020. (in Chinese)
|
11 |
GILLIOZ A, CASAS J, MUGELLINI E, et al. Overview of the Transformer-based models for NLP tasks[C]//Proceedings of the 15th Conference on Computer Science and Information Systems. Washington D.C., USA: IEEE Press, 2020: 179-183.
|
12 |
CHANG Z X, CAI Q Y. Enhanced vision Transformer with dual-dimensional self-attention for image recognition[C]//Proceedings of the IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI). Washington D.C., USA: IEEE Press, 2023: 346-351.
|
13 |
孙懿, 高见, 顾益军. 融合一维Inception结构与ViT的恶意加密流量检测. 计算机工程, 2023, 49 (1): 154- 162.
doi: 10.3969/j.issn.1007-130X.2023.01.018
|
|
SUN Y , GAO J , GU Y J . Malicious encrypted traffic detection integrating one-dimensional Inception structure and ViT. Computer Engineering, 2023, 49 (1): 154- 162.
doi: 10.3969/j.issn.1007-130X.2023.01.018
|
14 |
刘贺, 张文波. 一种基于ViT改进的轻量化恶意流量识别方法. 小型微型计算机系统, 2024, 45 (2): 388- 395.
|
|
LIU H , ZHANG W B . Improved light-weight malicious traffic identification method based on ViT. Journal of Chinese Computer Systems, 2024, 45 (2): 388- 395.
|
15 |
刘帅. 基于机器学习的加密流量识别研究与实现[D]. 北京: 北京邮电大学, 2020.
|
|
LIU S. Research and implementation of encrypted traffc recognition based on machine learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2020. (in Chinese)
|
16 |
ZANDER S, NGUYEN T, ARMITAGE G. Automated traffic classification and application identification using machine learning[C]// Proceedings of the IEEE Conference on Local Computer Networks. Washington D.C., USA: IEEE Press, 2005: 250-257.
|
17 |
CHEESEMAN P , STUTZ J . Bayesian classification (AutoClass): theory and results. Advances in knowledge discovery and data mining, 1996, 180, 153- 180.
|
18 |
|
19 |
ERMAN J, MAHANTI A, ARLITT M, et al. Identifying and discriminating between Web and peer-to-peer traffic in the network core[C]//Proceedings of the 16th International Conference on World Wide Web. New York, USA: ACM Press, 2007: 883-892.
|
20 |
WANG W, ZHU M, WANG J L, et al. End-to-end encrypted traffic classification with one-dimensional convolution neural networks[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI). Washington D.C., USA: IEEE Press, 2017: 43-48.
|
21 |
WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the International Conference on Information Networking. Washington D.C., USA: IEEE Press, 2017: 712-717.
|
22 |
ZOU Z, GE J G, ZHENG H B, et al. Encrypted traffic classification with a convolutional long short-term memory neural network[C]// Proceedings of the IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). Washington D.C., USA: IEEE Press, 2018: 329-334.
|
23 |
LOTFOLLAHI M , SIAVOSHANI M J , ZADE R S H , et al. Deep packet: a novel approach for encrypted traffic classification using deep learning. Soft Computing, 2020, 24 (3): 1999- 2012.
doi: 10.1007/s00500-019-04030-2
|
24 |
DAINOTTI A , PESCAPE A , CLAFFY K C . Issues and future directions in traffic classification. IEEE Network, 2012, 26 (1): 35- 40.
doi: 10.1109/MNET.2012.6135854
|
25 |
|
26 |
LIU N, HAN J W. DHSNet: deep hierarchical saliency network for salient object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE Press, 2016: 678-686.
|