[1] SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2019: 2828-2837. [2] 王俊, 赖会霞, 万玥, 等. 基于角度的图神经网络高维数据异常检测方法[J]. 计算机工程, 2024, 50(3): 156-165. WANG J, LAI H X, WAN Y, et al. Angle-based graph neural network method for anomaly detection in high dimensional data[J]. Computer Engineering, 2024, 50(3): 156-165. (in Chinese) [3] 陈何雄, 罗宇薇, 韦云凯, 等. 基于联邦学习的SDN异常流量协同检测技术[J]. 计算机工程, 2023, 49(3): 168-176. CHEN H X, LUO Y W, WEI Y K, et al. Collaborative detection technology of SDN abnormal traffic based on federated learning[J]. Computer Engineering, 2023, 49(3): 168-176. (in Chinese) [4] DENG A L, HOOI B. Graph neural network-based anomaly detection in multivariate time series[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence/33rd Conference on Innovative Applications of Artificial Intelligence/11th Symposium on Educational Advances in Artificial Intelligence. Palo Alto, USA: AAAI Press, 2021: 8-15. [5] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. [6] HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2018: 387-395. [7] KIM S, CHOI K, CHOI H S, et al. Towards a rigorous evaluation of time-series anomaly detection[EB/OL].[2024-03-17]. https://arxiv.org/abs/2109.05257. [8] SEHILI M E A, ZHANG Z H. Multivariate time series anomaly detection: fancy algorithms and flawed evaluation methodology[EB/OL].[2024-03-17]. https://arxiv.org/abs/2308.13068. [9] ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the IEEE International Conference on Data Mining (ICDM). Washington D.C., USA: IEEE Press, 2020: 841-850. [10] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33: 6840-6851. [11] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder — decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, USA: ACL Press, 2014: 1724-1734. [12] EMADI H S, MAZINANI S M. A novel anomaly detection algorithm using DBSCAN and SVM in wireless sensor networks[J]. Wireless Personal Communications, 2018, 98(2): 2025-2035. [13] ZARE MOAYEDI H, MASNADI-SHIRAZI M A. ARIMA model for network traffic prediction and anomaly detection[C]//Proceedings of the International Symposium on Information Technology. Washington D.C., USA: IEEE Press, 2008: 1-6. [14] CHEN L D, LAO K W, MA Y L, et al. Error modeling and anomaly detection of smart electricity meter using TSVD+L method[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-14. [15] LI T Y, COMER M L, DELP E J, et al. Anomaly scoring for prediction-based anomaly detection in time series[C]//Proceedings of the IEEE Aerospace Conference. Washington D.C., USA: IEEE Press, 2020: 1-7. [16] MUNIR M, SIDDIQUI S A, DENGEL A, et al. DeepAnT: a deep learning approach for unsupervised anomaly detection in time series[J]. IEEE Access, 2019, 7: 1991-2005. [17] PARK J, PARK Y, KIM C I. TCAE: temporal convolutional autoencoders for time series anomaly detection[C]//Proceedings of the 13th International Conference on Ubiquitous and Future Networks (ICUFN). Washington D.C., USA: IEEE Press, 2022: 421-426. [18] MALHOTRA P, RAMAKRISHNAN A, ANAND G, et al. LSTM-based encoder — decoder for multi-sensor anomaly detection[EB/OL].[2024-03-17]. https://arxiv.org/abs/1607.00148. [19] XU H W, FENG Y, CHEN J, et al. Unsupervised anomaly detection via variational auto-encoder for seasonal KPIs in Web applications[C]//Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM Press, 2018: 187-196. [20] LI Z Y, SUN Y, YANG L H, et al. Unsupervised machine anomaly detection using autoencoder and temporal convolutional network[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-13. [21] LIANG H R, SONG L, DU J R, et al. Consistent anomaly detection and localization of multivariate time series via cross-correlation graph-based encoder — decoder GAN[J]. IEEE Transactions on Instrumentation Measurement, 2022, 71: 3139696. [22] ZHAN J, WANG S Q, MA X D, et al. STGAT-MAD: spatial-temporal graph attention network for multivariate time series anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Washington D.C., USA: IEEE Press, 2022: 3568-3572. [23] DOOLEY S, KHURANA G S, MOHAPATRA C, et al. ForecastPFN: synthetically-trained zero-shot forecasting[EB/OL].[2024-03-17]. https://arxiv.org/abs/2311.01933. [24] GOSWAMI M, SZAFER K, CHOUDHRY A, et al. MOMENT: a family of open time-series foundation models[EB/OL].[2024-03-17]. https://arxiv.org/abs/2402.03885. [25] JIN M, WANG S, MA L, et al. Time-LLM: time series forecasting by reprogramming large language models[EB/OL].[2024-03-17]. https://arxiv.org/abs/2310.01728. [26] CHANG C, PENG W C, CHEN T F. LLM4TS: two-stage fine-tuning for time-series forecasting with pre-trained LLMs[EB/OL].[2024-03-17]. https://arxiv.org/abs/2308.08469. [27] DHARIWAL P, NICHOL A. Diffusion models beat GANs on image synthesis[EB/OL].[2024-03-17]. https://arxiv.org/abs/2105.05233. [28] BLATTMANN A, ROMBACH R, LING H, et al. Align your latents: high-resolution video synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2023: 22563-22575. [29] YANG R H, SRIVASTAVA P, MANDT S. Diffusion probabilistic modeling for video generation[J]. Entropy, 2023, 25(10): 1469. [30] YANG D C, YU J W, WANG H L, et al. Diffsound: discrete diffusion model for text-to-sound generation[J]. ACM Transactions on Audio, Speech, and Language Processing, 2023, 31: 1720-1733. [31] YU C H, ZHOU Q, LI J L, et al. Points-to-3D: bridging the gap between sparse points and shape-controllable text-to-3D generation[C]//Proceedings of the 31st ACM International Conference on Multimedia. New York, USA: ACM Press, 2023: 6841-6850. [32] WYATT J, LEACH A, SCHMON S M, et al. AnoDDPM: anomaly detection with denoising diffusion probabilistic models using simplex noise[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Washington D.C., USA: IEEE Press, 2022: 19-35. [33] ZHANG H, WANG Z, WU Z, et al. DiffusionAD: denoising diffusion for anomaly detection[EB/OL].[2024-03-17]. https://arxiv.org/abs/2303.08730. [34] RASUL K, SEWARD C, SCHUSTER I, et al. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting[EB/OL].[2024-03-17]. https://arxiv.org/abs/2101.12072. [35] PINTILIE I, MANOLACHE A, BRAD F. Time series anomaly detection using diffusion-based models[C]//Proceedings of the IEEE International Conference on Data Mining Workshops (ICDMW). Washington D.C., USA: IEEE Press, 2023: 570-578. [36] LUO C, LOU J G, LIN Q W, et al. Correlating events with time series for incident diagnosis[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington D.C., USA: IEEE Press, 2014: 1583-1592. [37] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL].[2024-03-17]. https://arxiv.org/abs/1609.02907. [38] BIANCHI F M, GRATTAROLA D, LIVI L, et al. Graph neural networks with convolutional ARMA filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(7): 3496-3507. [39] JIN W, MA Y, LIU X R, et al. Graph structure learning for robust graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery[WT《Times New Roman》]& Data Mining. New York, USA: ACM Press, 2020: 66-74. [40] SINGHAL A. Modern information retrieval: a brief overview[J]. IEEE Data Engineering Bulletin, 2001, 24(4): 35-43. [41] GOH J, ADEPU S, JUNEJO K N, et al. A dataset to support research in the design of secure water treatment systems[M]. Berlin, Germany: Springer, 2017. [42] MOHAMED A, OTHMAN A, GALAL W F, et al. Integrated geophysical approach of groundwater potential in Wadi AI Ranyah, Saudi Arabia, using gravity, electrical resistivity, and remote-sensing techniques[J]. Remote Sensing, 2023, 15(7): 1808. [43] TULI S, CASALE G, JENNINGS N R. TranAD: deep Transformer networks for anomaly detection in multivariate time series data[EB/OL].[2024-03-17]. https://arxiv.org/abs/2201.07284. [44] XU J, WU H, WANG J, et al. Anomaly Transformer: time series anomaly detection with association discrepancy[EB/OL].[2024-03-17]. https://transferlab.ai/pills/2022/anomaly-transformer/. [45] SCHÖLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. [46] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |