1 |
NADEEM U, SHAH S A, SOHEL F, et al. Deep learning for scene understanding. Handbook of Deep Learning Applications, 2019, 5, 21- 51.
|
2 |
褚张晴晴, 钟志强, 颜子夜, 等. 基于特征融合与注意力机制的脑肿瘤分割算法. 计算机工程, 2023, 49(10): 154- 161.
URL
|
|
CHU Z Q Q, ZHONG Z Q, YAN Z Y, et al. Brain tumor segmentation algorithm based on feature fusion and attention mechanism. Computer Engineering, 2023, 49(10): 154- 161.
URL
|
3 |
MIYAMOTO R, NAKAMURA Y, ADACHI M, et al. Vision-based road-following using results of semantic segmentation for autonomous navigation[C]//Proceedings of the 9th International Conference on Consumer Electronics. Washington D. C., USA: IEEE Press, 2019: 174-179.
|
4 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 3431- 3440.
|
5 |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany: Springer, 2015: 234-241.
|
6 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional Nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834- 848.
|
7 |
DHINGRA N, CHOGOVADZE G, KUNZ A. Border-SegGCN: improving semantic segmentation by refining the border outline using graph convolutional network[C]//Proceedings of International Conference on Computer Vision. Washington D. C., USA: IEEE Press, 2021: 865-875.
|
8 |
|
9 |
AKULA A R, WANG K Z, LIU C S, et al. CX-ToM: counterfactual explanations with theory-of-mind for enhancing human trust in image recognition models. iScience, 2022, 25(1): 103581.
doi: 10.1016/j.isci.2021.103581
|
10 |
|
11 |
SRIVASTAVA R K, GREFF K, SCHMIDHUBER J. Training very deep networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2015: 28.
|
12 |
袁立宁, 胡皓, 刘钊. 基于多通道图卷积自编码器的图表示学习. 计算机工程, 2023, 49(2): 150-160, 174.
URL
|
|
YUAN L N, HU H, LIU Z. Graph representation learning based on multi-channel graph convolutional autoencoders. Computer Engineering, 2023, 49(2): 150-160, 174.
URL
|
13 |
刘宽, 奚小冰, 周明东. 基于自适应多尺度图卷积网络的骨架动作识别. 计算机工程, 2023, 49(10): 264- 271.
URL
|
|
LIU K, XI X B, ZHOU M D. Skeleton action recognition based on adaptive multi-scale graph convolution network. Computer Engineering, 2023, 49(10): 264- 271.
URL
|
14 |
李威庭. 基于改进图卷积神经网络的面部动作单元识别算法研究[D]. 北京: 北京工业大学, 2021.
|
|
LI W T. Research on improved graph convolutional neural network computing model for facial action unit recognition[D]. Beijing: Beijing University of Technology, 2021. (in Chinese)
|
15 |
LI Y, GUPTA A. Beyond grids: learning graph representations for visual recognition[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York, USA: ACM Press, 2018: 9225-9235.
|
16 |
|
17 |
CHEN Y, ROHRBACH M, YAN Z, et al. Graph-based global reasoning networks[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2019: 433-442.
|
18 |
|
19 |
YU Q Y, LOU J M, ZHAN X Y, et al. Adversarial contrastive learning via asymmetric InfoNCE[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 53-69.
|
20 |
|
21 |
ZHANG L, CHEN X, ZHANG J, et al. Contrastive deep supervision[C]//Proceedings of European Conference on Computer Vision. Berlin, Germany: Springer, 2022: 1-19.
|
22 |
CORDTS M, OMRAN M, RAMOS S, et al. The CityScapes dataset[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2015: 2.
|
23 |
XIE E Z, WANG W H, YU Z D, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[EB/OL]. [2023-03-01]. https://arxiv.org/abs/2105.15203.
|
24 |
YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision. Berlin, Germany: Springer, 2018: 325-341.
|
25 |
YU C Q, GAO C X, WANG J B, et al. BiSeNetV2: bilateral network with guided aggregation for real-time semantic segmentation. International Journal of Computer Vision, 2021, 129, 3051- 3068.
|
26 |
SEICHTER D, KÖHLER M, LEWANDOWSKI B, et al. Efficient RGB-D semantic segmentation for indoor scene analysis[C]//Proceedings of International Conference on Robotics and Automation. Washington D. C., USA: IEEE Press, 2021: 13525-13531.
|
27 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2017: 2881-2890.
|
28 |
DONG X Y, BAO J M, CHEN D D, et al. CSWin Transformer: a general vision Transformer backbone with cross-shaped windows[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12124-12134.
|
29 |
GU J Q, KWON H, WANG D L, et al. Multi-scale high-resolution vision transformer for semantic segmentation[C]//Proceedings of Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: IEEE Press, 2022: 12094-12103.
|