[1] GUO L, NI J, SHI Y Q. Uniform embedding for efficient JPEG steganography[J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 814-825. [2] HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters[C]//Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS). Washington D.C.,USA:IEEE Press,2013: 234-239. [3] 卞玉星, 黄荣, 周树波, 等. 基于可逆神经网络的多载体图像隐写模型[J]. 计算机工程, 2024, 50(12): 213-223. BIAN Y X, HUANG R, ZHOU S B, et al. Multi-cover image steganography model based on invertible neural network[J]. Computer Engineering, 2024, 50(12): 213-223. (in Chinese) [4] HUANG Y F, TANG S Y, YUAN J. Steganography in inactive frames of VoIP streams encoded by source codec[J]. IEEE Transactions on Information Forensics and Security, 2011, 6(2): 296-306. [5] YANG Z L, PENG X S, HUANG Y F. A sudoku matrix-based method of pitch period steganography in low-rate speech coding[EB/OL].[2024-01-05]. https://link.springer.com/chapter/10.1007/978-3-319-78813-5_40. [6] 张晓虹, 项世军, 黄红斌. 利用可逆网络的音频藏图算法[J]. 西安电子科技大学学报, 2024, 51(4): 226-238. ZHANG X H, XIANG S J, HUANG H B. Hiding images in audio based on invertible neural networks[J]. Journal of Xidian University, 2024, 51(4): 226-238. (in Chinese) [7] LUO Y B, HUANG Y F. Text steganography with high embedding rate: using recurrent neural networks to generate Chinese classic poetry[C]//Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security. New York,USA:ACM Press,2017: 99-104. [8] YANG B Y, PENG W L, XUE Y M, et al. A generation-based text steganography by maintaining consistency of probability distribution[J]. KSII Transactions on Internet & Information Systems, 2021, 15: 4184-4202. [9] 向凌云, 杨双辉, 王蓉, 等. 基于序列到隐写序列的约束型自然语言信息隐藏方法[J]. 计算机学报, 2023, 46(8): 1650-1669. XIANG L Y, YANG S H, WANG R, et al. Constrained linguistic steganography based on sequence to steganographic sequence model[J]. Chinese Journal of Computers, 2023, 46(8): 1650-1669. (in Chinese) [10] 杨雨, 张梓葳, 文娟. 基于胶囊网络的多任务少样本文本隐写分析[J]. 计算机学报, 2022, 45(12): 2592-2604. YANG Y, ZHANG Z W, WEN J. Multi-task few-shot text steganalysis based on capsule network[J]. Chinese Journal of Computers, 2022, 45(12): 2592-2604. (in Chinese) [11] XIANG L Y, SUN X M, LUO G, et al. Research on steganalysis for text steganography based on font format[C]//Proceedings of the 3rd International Symposium on Information Assurance and Security. Washington D.C.,USA:IEEE Press,2007: 490-495. [12] CHEN Z L, HUANG L S, MIAO H B, et al. Steganalysis against substitution-based linguistic steganography based on context clusters[J]. Computers & Electrical Engineering, 2011, 37(6): 1071-1081. [13] MENG P, HANG L S, YANG W, et al. Linguistic steganography detection algorithm using statistical language model[C]//Proceedings of the International Conference on Information Technology and Computer Science. Washington D.C.,USA:IEEE Press,2009: 540-543. [14] WEN J, ZHOU X J, ZHONG P, et al. Convolutional neural network based text steganalysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 460-464. [15] NIU Y, WEN J, ZHONG P, et al. A hybrid R-BiLSTM-C neural network based text steganalysis[J]. IEEE Signal Processing Letters, 2019, 26(12): 1907-1911. [16] YANG H, BAO Y J, YANG Z L, et al. Linguistic steganalysis via densely connected LSTM with feature pyramid[C]//Proceedings of the 2020 ACM Workshop on Information Hiding and Multimedia Security. New York,USA:ACM Press,2020: 5-10. [17] YANG J S, YANG Z L, ZHANG S Y, et al. SeSy: linguistic steganalysis framework integrating semantic and syntactic features[J]. IEEE Signal Processing Letters, 2022, 29: 31-35. [18] WU H Z, YI B, DING F, et al. Linguistic steganalysis with graph neural networks[J]. IEEE Signal Processing Letters, 2021, 28: 558-562. [19] GUO S N, LIU J Y, YANG Z L, et al. Linguistic steganalysis merging semantic and statistical features[J]. IEEE Signal Processing Letters, 2022, 29: 2128-2132. [20] XU Q, ZHANG R, LIU J Y. Linguistic steganalysis by enhancing and integrating local and global features[J]. IEEE Signal Processing Letters, 2023, 30: 16-20. [21] GUO S N, LIU J Y, YANG Z L, et al. Linguistic steganalysis merging semantic and statistical features[J]. IEEE Signal Processing Letters, 2022, 29: 2128-2132. [22] TASKIRAN C M, TOPKARA U, TOPKARA M, et al. Attacks on lexical natural language steganography systems[J]. Security, Steganography, and Watermarking of Multimedia Contents VIII, 2006, 6072: 607209. [23] XIANG L Y, SUN X M, LUO G, et al. Linguistic steganalysis using the features derived from synonym frequency[J]. Multimedia Tools and Applications, 2014, 71(3): 1893-1911. [24] XUE Y M, KONG L Z, PENG W L, et al. An effective linguistic steganalysis framework based on hierarchical mutual learning[J]. Information Sciences, 2022, 586: 140-154. [25] GO A, BHAYANI R, HUANG L. Twitter sentiment classification using distant supervision[EB/OL].[2024-01-05]. https://cs.stanford.edu/people/alecmgo/papers/TwitterDistant Supervision09.pdf. [26] MAAS A L, DALY R E, PHAM P T, et al. Learning word vectors for sentiment analysis[EB/OL].[2024-01-05]. https://ai.stanford.edu/~ang/papers/acl11-WordVectors SentimentAnalysis.pdf. [27] FANG T N, JAGGI M, ARGYRAKI K. Generating steganographic text with LSTMs[EB/OL].[2024-01-05]. https://arxiv.org/abs/1705.10742. [28] YANG Z L, GUO X Q, CHEN Z M, et al. RNN-stega: linguistic steganography based on recurrent neural networks[J]. IEEE Transactions on Information Forensics and Security, 2019, 14(5): 1280-1295. [29] YANG Z L, ZHANG S Y, HU Y T, et al. VAE-stega: linguistic steganography based on variational auto-encoder[J]. IEEE Transactions on Information Forensics and Security, 2021, 16(4): 880-895. [30] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL].[2024-01-05]. https://arxiv.org/abs/1810.04805. |