作者投稿和查稿 主编审稿 专家审稿 编委审稿 远程编辑

热点文章

Please wait a minute...
  • 全选
    |
  • 热点与综述
    黄开基, 杨华
    计算机工程. 2024, 50(10): 16-34. https://doi.org/10.19678/j.issn.1000-3428.0068580
    摘要 (334) PDF全文 (1640) HTML (23)   可视化   收藏

    图像匹配的目标是从两个或多个图像中找到相似结构之间的对应关系, 是计算机视觉技术的重要基础, 在机器人、遥感、自动驾驶等领域具有广泛应用。近年来随着深度学习技术的发展, 基于深度学习的二维(2D)图像匹配算法在特征提取、特征描述、特征匹配3个方面不断进行改进, 其性能在匹配精度、鲁棒性等方面远超传统算法, 取得了重大突破。首先, 总结近10年基于深度学习特征的2D图像匹配算法, 将其分为基于局部特征的双阶段图像匹配、联合特征检测和描述的图像匹配、无特征检测的图像匹配3类算法, 阐述这3类算法的发展过程、分类方法、性能评价指标并归纳其优点及局限性。然后, 介绍2D图像匹配算法的典型应用场景, 分析2D图像匹配算法的研究进展对其应用领域的影响。最后, 总结并展望2D图像匹配算法的发展趋势。

  • 热点与综述
    孙仁科, 许靖昊, 皇甫志宇, 李仲年, 许新征
    计算机工程. 2024, 50(10): 1-15. https://doi.org/10.19678/j.issn.1000-3428.0070036
    摘要 (255) PDF全文 (345) HTML (19)   可视化   收藏

    近年来随着人工智能(AI)技术在计算机视觉与自然语言处理等单模态领域表现出愈发优异的性能, 多模态学习的重要性和必要性逐渐展现出来, 其中基于视觉-语言预训练模型的零样本迁移(ZST)方法得到了国内外研究者的广泛关注。得益于预训练模型强大的泛化性能, 使用视觉-语言预训练模型不仅能提高零样本识别任务的准确率, 而且能够解决部分传统方法无法解决的零样本下游任务问题。对基于视觉-语言预训练模型的ZST方法进行概述, 首先介绍了零样本学习(FSL)的传统方法, 并对其主要形式加以总结; 然后阐述了基于视觉-语言预训练模型的ZST和FSL的区别及其可以解决的新任务; 其次介绍了基于视觉-语言预训练模型的ZST方法在样本识别、目标检测、语义分割、跨模态生成等下游任务中的应用情况; 最后对现有的基于视觉-语言预训练模型的ZST方法存在的问题进行分析并对未来的研究方向进行展望。

  • 图形图像处理
    王非凡, 陈希爱, 任卫红, 管宇, 韩志, 唐延东
    计算机工程. 2024, 50(10): 352-361. https://doi.org/10.19678/j.issn.1000-3428.0068407
    摘要 (175) PDF全文 (187) HTML (3)   可视化   收藏

    在低光环境下的检测任务中, 由于低亮度、低对比度以及噪声等不利因素影响, 会存在对目标的漏检、错检等现象。针对此问题, 提出基于图像自适应增强的低照度目标检测算法。将传统图像处理方法与深度学习相结合, 设计图像自适应增强网络, 使用多个可调滤波器通过级联的方式进行结合, 对输入的低光图像进行逐步增强, 各滤波器的调节参数由卷积神经网络根据输入图像的全局信息进行预测。将图像自适应增强网络与YOLOv5目标检测网络相结合进行端到端的联合训练, 使图像增强效果更有利于目标检测。由于在低光目标检测过程中易出现漏检现象, 对通道注意力机制SE-Net进行改进, 设计特征增强网络, 并嵌入到YOLOv5网络中Neck部分的末端, 以减少网络特征融合过程中造成潜在目标特征的信息损失。实验结果表明, 所提算法在真实低光数据集ExDark上的检测精度达到了77.3%, 相较于原始YOLOv5目标检测网络提高了2.1个百分点, 检测速度达到79帧/s, 能够实现实时检测的效果。

  • 热点与综述
    顾宇衡, 潘嘉诚, 钱江波, 董一鸿
    计算机工程. 2024, 50(10): 35-50. https://doi.org/10.19678/j.issn.1000-3428.0068719
    摘要 (129) PDF全文 (193) HTML (7)   可视化   收藏

    阿尔茨海默病(AD)是一种不可逆的神经退行性疾病, 会导致认知能力的逐渐下降。AD症状的演变过程可能很长, 在不同的神经成像模式中可检测到脑区生物标志物的细微变化, 但其早期检测具有挑战性。由于神经成像数据的高度复杂性和大脑网络的不规则性, 传统的机器学习和深度神经网络模型存在许多不足, 开发基于图神经网络(GNN)的计算机辅助诊断(CAD)模型可以为分析非欧几里得空间的神经影像模式以及探究生物标志物提供极大帮助。首先, 对基于GNN分类方法的AD预测进行详细的调研和概述。然后, 从基于单模态数据和基于多模态数据两个视角进行梳理, 重点介绍和分析这些方法在单模态和多模态数据应用场景中的数据提取、脑网络建模、特征学习、信息融合等过程, 并评述部分方法的性能。最后, 针对GNN应用于AD诊断的主要挑战和未来研究方向进行了展望, 为AD辅助诊断的进一步研究提供有益的建议。

  • 人工智能与模式识别
    匡鑫, 阳波, 马华, 唐文胜, 肖宏峰, 陈灵
    计算机工程. 2024, 50(10): 119-136. https://doi.org/10.19678/j.issn.1000-3428.0068502
    摘要 (184) PDF全文 (176) HTML (6)   可视化   收藏

    针对蜣螂优化算法(DBO)搜索精度较差、全局搜索能力不足、容易陷入局部最优等问题, 提出一种多策略改进的蜣螂优化算法。选用混沌反向学习策略初始化蜣螂种群, 使得蜣螂个体在解空间内分布均匀, 提升种群多样性; 引入带非线性权重的黄金正弦策略改进滚球行为, 协调算法的全局搜索与局部挖掘能力; 借鉴麻雀搜索算法的加入者位置更新策略改进觅食行为, 促使种群向最优位置靠近, 提高算法收敛速度与收敛精度; 以分段函数形式改进偷窃行为, 利于种群在迭代前期对全局充分探索, 避免算法过早收敛; 采用非线性权重的柯西-高斯变异策略对当前最优位置进行随机扰动, 引导算法跳出局部最优位置。将所提算法与5种优化算法在23个基准函数、12个CEC2022测试函数及2个工程优化问题上进行实验对比, 结果表明, 所提算法至少在21个基准函数、10个CEC2022测试函数及2个工程优化问题上的性能指标优于其他算法, 且排名第1, 相比于原始蜣螂优化算法, 在收敛精度、收敛速度、全局搜索能力以及稳定性上都有较大提升。

  • 热点与综述
    魏嵬, 丁香香, 郭梦星, 杨钊, 刘辉
    计算机工程. 2024, 50(9): 18-32. https://doi.org/10.19678/j.issn.1000-3428.0068086
    摘要 (605) PDF全文 (640) HTML (32)   可视化   收藏

    文本相似度计算是自然语言处理的一部分, 用来计算两个词、句子及文本之间的相似程度, 具有多种应用场景, 文本相似度计算的研究对于人工智能的发展有着重要作用。文本相似度计算起初基于字符串表面, 随着词向量的提出, 文本相似度计算可进行基于统计以及深度学习的建模与计算, 也可与预训练模型相结合。首先, 将文本相似度计算方法分为基于字符串、基于词向量、基于预训练模型、基于深度学习、其他方法5类, 并对这些方法进行简要介绍。然后, 根据不同文本相似度计算方法的原理, 具体介绍了编辑距离、汉明距离、词袋模型、向量空间模型(VSM)、深度结构语义模型(DSSM)、句子嵌入的简单对比学习(SimCSE)等常见方法。最后, 对文本相似度计算常用的数据集以及评价标准进行整理和分析, 并对文本相似度计算的未来发展进行展望。

  • 人工智能与模式识别
    杨冬菊, 黄俊涛
    计算机工程. 2024, 50(9): 113-120. https://doi.org/10.19678/j.issn.1000-3428.0068400
    摘要 (340) PDF全文 (598) HTML (23)   可视化   收藏

    高质量的标注数据是中文科技文献领域自然语言处理任务的重要基石。针对目前缺乏中文科技文献的高质量标注语料以及人工标注质量参差不齐且效率低下的问题, 提出一种基于大语言模型的中文科技文献标注方法。首先, 制定适用于多领域中文科技文献的细粒度标注规范, 明确标注实体类型以及标注粒度; 其次, 设计结构化文本标注提示模板和生成解析器, 将中文科技文献标注任务设置成单阶段单轮问答过程, 将标注规范和带标注文本填充至提示模板中相应的槽位以构建任务提示词; 然后, 将提示词注入到大语言模型中生成包含标注信息的输出文本, 经由解析器解析得到结构化的标注数据; 最后, 利用基于大语言模型的提示学习生成中文科技文献实体标注数据集ACSL, 其中包含分布在48个学科的10 000篇标注文档以及72 536个标注实体, 并在ACSL上提出基于RoBERTa-wwm-ext的3个基准模型。实验结果表明, BERT+Span模型在长跨度的中文科技文献实体识别任务中表现最佳, F1值为0.335。上述结果可作为后续研究的测试基准。

  • 体系结构与软件技术
    高秋辰, 胡勇华
    计算机工程. 2024, 50(9): 189-196. https://doi.org/10.19678/j.issn.1000-3428.0068240
    摘要 (233) PDF全文 (440) HTML (8)   可视化   收藏

    系统级芯片(SoC)集成多种外设接口, 其外设接口的验证工作已经成为芯片开发最耗时的环节之一。PCIe协议为系统内部提供了高速的点对点串行互联服务, 同时还支持热插拔和热交换, 逐渐成为一种通用的总线协议。使用传统硬件描述语言(HDL)对PCIe接口设计进行验证时, 存在短时间内难以覆盖多种设计场景和边界条件, 以及验证不完备等问题。为了解决上述问题, 利用统一验证方法学(UVM)搭建1个PCIe接口的验证平台。该平台采用UVM定义的框架和测试类, 实现了顶层环境集成和测试约束的设计, 具有可重用性强和验证全面的特点。实现的内容包括SoC系统级环境集成、待测模块设计与连接、验证平台中sequencer类和monitor类的实现, 以及部分接口设计。为了确保测试用例覆盖尽可能多地设计状态和路径, 针对性地划分不同功能点, 并设计约束条件。通过多种覆盖率指标对测试用例的有效性和覆盖程度进行评估。实验结果表明, 该验证平台能缩短验证周期, 使综合覆盖率提高30%以上。

  • 热点与综述
    王志浩, 钱沄涛
    计算机工程. 2024, 50(9): 33-45. https://doi.org/10.19678/j.issn.1000-3428.0068296
    摘要 (239) PDF全文 (720) HTML (23)   可视化   收藏

    遥感图像时空融合超分辨重建从高时序密度的低分辨率图像和低时序密度的高分辨率图像中提取信息, 生成同时具有高时序密度的高分辨率遥感图像, 它直接关系到后续的解译、检测、跟踪等任务的实施。随着卷积神经网络(CNN)的快速发展, 研究者们提出了一系列基于CNN的时空融合方法, 然而由于卷积的局限性, 这些方法在全局信息提取方面仍然存在不足。受Swin Transformer全局能力的启发, 提出一种基于Swin Transformer的超分辨重建模型。在特征提取阶段, 引入双流结构, 将特征提取网络分为两个部分, 分别提取时间信息与空间信息, 并通过Swin Transformer的全局能力提升模型性能。在特征融合阶段, 引入结合通道注意力与空间注意力的卷积块注意力模块(CBAM), 用于增强重要特征, 提升图像重建精度。在Coleambally灌溉区(CIA)与Gwydir下游流域(LGC)数据集上将该模型与多种时空融合超分辨率重建模型进行对比实验, 结果表明该模型在各项评价指标上均取得了最优的结果, 具有更出色的性能和更强的泛化能力。

  • 图形图像处理
    张天鹏, 韩晶, 吕学强
    计算机工程. 2024, 50(9): 304-312. https://doi.org/10.19678/j.issn.1000-3428.0069039
    摘要 (167) PDF全文 (204) HTML (17)   可视化   收藏

    小目标通常具有低分辨率和模糊不清的特点, 并容易受到遮挡和背景的影响, 导致难以实现准确且实时的小目标检测。为提升检测效果, 提出一种基于多任务学习的超分辨率辅助小目标检测算法Multi-YOLO。首先, 引入一个超分辨率辅助分支引导主干网络提取有效特征, 减少小目标信息丢失; 其次, 采用Anchor based协同监督Anchor free的双检测头训练方法来辅助提升检测准确性, 另外, 在骨干网络尾部使用CTR3模块加强目标信息与位置感知的关联性; 最后, 在推理阶段仅使用检测分支进行推理以保证推理速度。实验结果表明, Multi-YOLO相对于基准网络在VEDAI、COCO MiniTrain和SPCD数据集上均取得了一定的性能提升, 其中在VEDAI数据集上, Multi-YOLO实现了10.9%的平均精度均值(mAP)提升, 且与基准模型大小相近。同时, 与主流的单阶段目标检测网络相比, Multi-YOLO在小目标检测方面表现出色, 并在精度和速度之间取得了平衡。

  • 人工智能与模式识别
    王志特, 罗丽平, 廖义奎
    计算机工程. 2024, 50(8): 86-101. https://doi.org/10.19678/j.issn.1000-3428.0068483
    摘要 (479) PDF全文 (1383) HTML (23)   可视化   收藏

    针对机器人路径规划对于路径最短、搜索效率以及平滑度的性能要求, 提出一种改进A*算法与改进动态窗口法(DWA)相融合的算法。针对传统A*算法在复杂场景下输出非最优路径、寻路效率低等问题, 结合曼哈顿距离和对角线距离设计新的启发函数, 并对其动态分配权重, 实现全局路径最短, 减少寻路时间。针对传统8邻域8方向搜索方式搜索效率低、耗时长等问题, 提出一种基于8邻域改进的搜索策略, 对当前节点实时动态分配最优的搜索方向。针对路径存在多余无用节点的问题, 使用Floyd算法去除冗余节点, 减少转向次数, 缩短路径长度。针对传统动态窗口法规划的路径非全局最优、目标点附近存在障碍物时规划的路径长度增加或者规划失败的问题, 加入全局关键节点信息和引入目标点距离评估子函数。针对关键节点距离较长导致融合算法规划的路径偏离全局最优路径的问题, 提出关键点密集化策略。最后, 将提出的改进A*算法、融合算法和已有的其他改进算法进行比较, 仿真结果表明: 改进的A*算法能够在复杂环境中生成最短全局路径, 平均转向次数减少16.3%, 平均寻路时间缩短55.66%;融合算法在临时障碍物环境下, 平均路径长度和平均运行时间分别缩短6.1%和14.7%, 在移动障碍物环境下, 平均路径长度和平均运行时间分别缩短1.6%和39.8%。

  • 人工智能与模式识别
    李华昱, 张智康, 闫阳, 岳阳
    计算机工程. 2024, 50(8): 31-39. https://doi.org/10.19678/j.issn.1000-3428.0068225
    摘要 (345) PDF全文 (455) HTML (32)   可视化   收藏

    针对特定领域中文命名实体识别存在的局限性, 提出一种利用学科图谱和图像提高实体识别准确率的模型, 旨在利用领域图谱和图像提高计算机学科领域短文本中实体识别的准确率。使用基于BERT-BiLSTM-Attention的模型提取文本特征, 使用ResNet152提取图像特征, 并使用分词工具获得句子中的名词实体。通过BERT将名词实体与图谱节点进行特征嵌入, 利用余弦相似度查找句子中的分词在学科图谱中最相似的节点, 保留到该节点距离为1的邻居节点, 生成最佳匹配子图, 作为句子的语义补充。使用多层感知机(MLP)将文本、图像和子图3种特征映射到同一空间, 并通过独特的门控机制实现文本和图像的细粒度跨模态特征融合。最后, 通过交叉注意力机制将多模态特征与子图特征进行融合, 输入解码器进行实体标记。在Twitter2015、Twitter2017和自建计算机学科数据集上同基线模型进行实验比较, 结果显示, 所提方法在领域数据集上的精确率、召回率和F1值分别可达88.56%、87.47%和88.01%, 与最优基线模型相比, F1值提高了1.36个百分点, 表明利用领域知识图谱能有效提升实体识别效果。

  • 人工智能与模式识别
    谭郁松, 李恬, 张钰森
    计算机工程. 2024, 50(8): 1-12. https://doi.org/10.19678/j.issn.1000-3428.0068554
    摘要 (270) PDF全文 (471) HTML (28)   可视化   收藏

    随着移动计算、第五代移动通信技术(5G)以及物联网(IoT)技术的不断演进, 各类终端设备的数量呈现指数级增长。这种激增的终端设备连接到网络产生了巨大的数据流, 对于需要实时处理和快速响应用户任务的需求提出了新的挑战。尤其是在这些海量数据中, 半结构化和非结构化数据所占比例较大, 这使得神经网络因其独特的优势而得到了广泛应用。为了提高数据处理能力和推理精度, 神经网络模型会被设计得非常复杂, 其存储和运行均需要消耗大量的计算资源。然而, 边缘设备通常只配置有限的计算资源, 无法满足存储和运行复杂神经网络模型的需求, 需要借助云计算中心来完成这些任务。这种云协同会引发响应延时和增加网络带宽消耗, 并带来用户隐私数据泄露等潜在风险。为了解决这些问题, 提出一种面向边缘智能的神经网络模型快速生成与自动化部署(NGD)方法, 根据边缘设备的硬件配置和承载的具体计算任务需求, 生成与其匹配的神经网络模型, 并将其快速部署在目标设备上, 实现设备本地推理。在3种典型的硬件平台上的神经网络模型生成与部署实验结果表明, NGD方法能够高效地为资源受限的边缘设备生成匹配的神经网络模型, 并快速地将其部署在设备上进行推理任务。

  • 人工智能与模式识别
    张亚洲, 和玉, 戎璐, 王祥凯
    计算机工程. 2024, 50(8): 75-85. https://doi.org/10.19678/j.issn.1000-3428.0067936
    摘要 (209) PDF全文 (402) HTML (13)   可视化   收藏

    抑郁症作为一种常见的心理健康问题,严重影响人们的日常生活甚至是生命安全。鉴于目前的抑郁症检测存在主观性和人工干预等缺点,基于深度学习的自动检测方式成为热门研究方向。对于最易获取的文本模态而言,主要的挑战在于如何建模抑郁文本中的长距离依赖与序列依赖。为解决该问题,提出一种基于上下文知识的增强型Transformer网络模型RoBERTa-BiLSTM,旨在从抑郁文本序列中充分提取和利用上下文特征。结合序列模型与Transformer模型优点,建模单词间上下文交互,为抑郁类别揭示与信息表征提供参考。首先,利用RoBERTa方法将词汇嵌入到语义向量空间;其次,利用双向长短期记忆网络(BiLSTM)模型有效捕获长距离上下文语义;最后,在DAIC-WOZ和EATD-Corpus 2个大规模数据集上进行实证研究。实验结果显示,RoBERTa-BiLSTM模型的准确率分别达到0.74和0.93以上,召回率分别达到0.66和0.56以上,能够准确地检测抑郁症。

  • 图形图像处理
    王昱婷, 刘志明, 万亚平, 朱涛
    计算机工程. 2024, 50(8): 270-281. https://doi.org/10.19678/j.issn.1000-3428.0068186
    摘要 (190) PDF全文 (577) HTML (13)   可视化   收藏

    图像融合是将多个输入图像合并成一个单一图像的技术。可见光红外图像融合能提高目标检测的准确性, 但在低光照场景下往往效果不佳。基于此, 提出一种新的融合模型DAPR-Net。该模型具有跨层残差连接的编解码结构, 将编码器的输出与解码器的对应层的输入相连接, 加强各层卷积层间的信息传递。在编码器中设计了双注意力特征提取模块AFEM, 使得网络能够更好地区分融合图像与输入的可见光和红外图像之间的差异, 同时保留两者的关键信息。在多个公开数据集上与6种先进方法进行对比, 实验结果表明, 与基准PIAFusion模型相比, 该模型在LLVIP和MSRS数据集上的信息熵、空间频率、平均梯度、标准差、视觉保真度指标分别提高了0.849、3.252、7.634、10.38、0.293和2.105、2.23、4.099、27.938、0.343;在YOLOV5目标检测网络上, LLVIP和MSRS数据集的平均精度均值、召回率、精确率、F1值指标分别提高了8.8、1.4、1.9、1.5个百分点和7.5、1.4、8.8、1.2个百分点, 相较于其他融合方法表现出更显著的优势。

  • 人工智能与模式识别
    钱来, 赵卫伟
    计算机工程. 2024, 50(7): 104-111. https://doi.org/10.19678/j.issn.1000-3428.0068132
    摘要 (442) PDF全文 (569) HTML (35)   可视化   收藏

    文本分类作为自然语言处理领域的基本任务, 在信息检索、机器翻译和情感分析等应用中发挥着重要作用。然而大多数深度模型在预测时未充分考虑训练实例的丰富信息, 导致学到的文本特征不够全面。为了充分利用训练实例信息, 提出一种基于对比学习和注意力机制的文本分类方法。首先, 设计一种有监督对比学习训练策略, 旨在优化模型对文本向量表征的检索, 提高模型在推理过程中检索到的训练实例的质量; 然后, 构建注意力机制, 对获取的训练文本特征进行注意力分布学习, 聚焦关联性更强的相邻实例信息, 获得更多隐含的相似特征; 最后, 将注意力机制与模型网络相结合, 融合相邻的训练实例信息, 增强模型提取多样性特征的能力, 实现全局特征和局部特征的提取。实验结果表明, 所提方法在卷积神经网络(CNN)、双向长短期记忆网络(BiLSTM)、图卷积网络(GCN)、BERT和RoBERTa等多个模型上都取得了显著的性能提升。以CNN模型为例, 其在THUCNews数据集、今日头条数据集和搜狗数据集上宏F1值分别提高了4.15、6.2和1.92个百分点。因此, 该方法也为文本分类任务提供了一种有效的解决方案。

  • 智慧教育
    李惠乾, 钟柏昌
    计算机工程. 2024, 50(7): 1-12. https://doi.org/10.19678/j.issn.1000-3428.0069539
    摘要 (358) PDF全文 (299) HTML (45)   可视化   收藏

    知识图谱与教育教学的深度融合推动了智慧教育的发展。目前有关教育知识图谱的文献综述较为缺乏, 有必要从研究规范性及内容视角方面进行补充完善。利用系统性文献综述法对近10年发表的55篇中文核心期刊文献进行统计分析后发现: 在关键技术方面, 教育知识图谱构建主要包含本体构建、知识抽取、知识表示、知识融合和知识推理5项技术, 深度学习方法逐渐成为研究热点; 在应用场景方面, 教育知识图谱覆盖个性化学习推荐、智能问答(Q&A)、教学资源管理、智能搜索、智能学情诊断和课堂教学分析6类场景, 应用的广度和深度不断拓展; 在应用效果方面, 教育知识图谱促进了学习者个性化学习和碎片化泛在学习, 提升了学习者的学习绩效和教师的专业素养; 在问题与挑战方面, 教育知识图谱存在数据模态单一与缺乏优质数据集、自动化程度低与技术存在边界性、知识建模难度高与能力关照不足、缺乏互操作标准与教育应用率低等问题。后续研究将从完善理论与建立标准、优化技术与精准建模、强化应用与提升效果等方面进行深化。

  • 智慧教育
    杨兴睿, 马斌, 李森垚, 钟忺
    计算机工程. 2024, 50(7): 32-41. https://doi.org/10.19678/j.issn.1000-3428.0068625
    摘要 (197) PDF全文 (299) HTML (21)   可视化   收藏

    大语言模型在自然语言处理领域蓬勃发展, 但在教育数字化领域应用过程中仍面临一系列重要挑战。针对教育数字化领域垂域数据稀缺、摘要长度不稳定导致信息缺失或冗余的问题, 提出一种用于教育领域文本摘要的轻量化幂等模型框架IGLM。该模型首先采用多源训练进行自适应扩增以提升数据多样性, 然后对下游的文本摘要任务进行多种微调。同时, 为降低文本长度的影响, 设计幂等摘要生成策略拉近初次摘要与幂等摘要来约束模型, 减少语料分布不均导致的偏见, 结合量化技术在低资源条件下生成更为精确和流畅的摘要文本。实验以ROUGE分数为评估指标, 在公开中文文本摘要数据集LCSTS、EDUCATION、NLPCC上进行验证。实验结果表明, 该框架在生成摘要的准确率和流畅性上有明显提升, 其中ROUGE-1/2/L相较基线模型在LCSTS数据集上分别提升7.9、7.4、8.7个百分点, 在EDUCATION数据集上分别提升12.9、15.4、15.7个百分点, 在NLPCC数据集上分别提升12.2、11.7、12.7个百分点, 验证了模型有效性。

  • 人工智能与模式识别
    刘娟, 段友祥, 陆誉翕, 张鲁
    计算机工程. 2024, 50(7): 112-122. https://doi.org/10.19678/j.issn.1000-3428.0068020
    摘要 (186) PDF全文 (413) HTML (9)   可视化   收藏

    知识图谱补全是提高知识图谱质量的重要手段, 主要分为基于结构和基于描述的方法。基于结构的补全方法对图谱中常见的长尾实体推理性能表现不佳, 基于描述的补全方法在描述信息利用和负样本信息学习方面存在不足。针对上述问题, 提出基于知识增强的知识图谱补全方法KEKGC。设计一种特定模板, 将三元组及其描述信息通过人工定义的模板转换为连贯的自然语言描述语句输入预训练语言模型, 增强语言模型对三元组结构知识与描述知识的理解能力。在此基础上, 提出一种对比学习框架来提高链接预测任务的效率与准确率, 通过建立记忆库存储实体嵌入向量, 从中选择正负样本并结合InfoNCE损失进行训练。实验结果显示, 相较于MEM-KGC, KEKGC在WN18RR数据集上链接预测任务的平均倒数秩(MRR)提升了5.5, Hits@1、Hits@3、Hits@10指标分别提升了2.8、0.7、4.2个百分点, 三元组分类任务准确率达到94.1%, 表明所提方法具有更高的预测准确率与更好的泛化能力, 尤其对于长尾实体, 能够有效提升图谱补全的效果与效率。

  • 人工智能与模式识别
    刘建敏, 林晖, 汪晓丁
    计算机工程. 2024, 50(7): 144-153. https://doi.org/10.19678/j.issn.1000-3428.0068163
    摘要 (213) PDF全文 (256) HTML (16)   可视化   收藏

    现有的轨迹预测工作大多依赖于高精地图, 但高精地图的采集耗时长、成本高、处理复杂, 难以快速适应智能交通的大面积普及。为解决无地图场景下车辆轨迹预测问题, 提出一种基于多模态数据时空特征的轨迹预测方法。构建多个历史轨迹时空交互图, 交叉使用时间和空间注意力并进行深度融合, 以建模道路上车辆之间的时空关联性。在此基础上, 利用残差网络进行多目标多模态轨迹生成。在真实数据集Argoverse 2上进行模型的训练和测试, 实验结果表明, 相较于CRAT-Pred方法, 该模型在单模态预测方面最小平均位移误差、最小最终位移误差和未命中率指标分别提升了3.86%、3.89%、0.48%, 在多模态预测方面各项指标分别提升了0.78%、0.96%、0.42%。该方法能够有效地捕捉车辆移动轨迹的时间和空间特征, 并可在自动驾驶等相关领域得到有效应用。

  • 热点与综述
    徐明亮, 李芳媛, 马浩然, 何飞
    计算机工程. 2024, 50(6): 1-34. https://doi.org/10.19678/j.issn.1000-3428.0069014
    摘要 (230) PDF全文 (359) HTML (34)   可视化   收藏
    峰电位聚类是指在进行细胞外神经记录时,从神经电极记录中检测、聚类并确认出不同峰电位信号,并以一定的可靠度与假定的不同神经元对应。它是对细胞外神经记录进行预处理分析的基本步骤,也是神经科学中神经解码的首要步骤,更是当前高带宽脑机接口(BCI)的重要研究方向之一。传统峰电位聚类包括峰电位检测、峰电位对齐、特征提取、特征聚类等步骤。当前,随着神经电极数量和密度不断增加,神经记录的规模呈爆炸式增长,这对峰电位聚类算法的效率和精度提出重大挑战。此外,针对现有峰电位聚类算法特征提取和表征能力不强、信噪比低、信息混叠等问题,各种算法增强方案乃至人工智能和大数据峰电位聚类方案应运而生,极大促进了对大脑复杂原理和工作机制的理解。研究首先概述侵入式BCI、神经编解码与峰电位聚类的相关性,接着阐述了各类峰电位聚类算法的原理和一般过程,并探讨了大脑神经信号与具体行为的映射关系与应用,最后展望了未来神经编解码所面临的挑战和发展趋势。
  • 网络空间安全
    李永飞, 李铭洋, 常鑫, 曹可欣
    计算机工程. 2024, 50(6): 179-187. https://doi.org/10.19678/j.issn.1000-3428.0067570
    摘要 (247) PDF全文 (290) HTML (11)   可视化   收藏
    随着物联网技术的发展和应用范围的扩大,物联网设备和传感器的数量和种类也在不断增加。物联网水质传感器在生态监测与保护领域起着至关重要的作用,针对物联网水质传感器采集的监测数据中数据量大、维度高、无标注等问题,提出一种基于可解释性深度学习的无监督异常数据检测算法。使用自动编码器(AE)和SHAP算法对多维水质数据集进行异常检测。通过训练自动编码器模型,标记重建误差较大的数据,使用SHAP解释自动编码器并计算被标记数据中各数据特征的重要性。基于这些特征的重要性,确定最终的异常值,从而实现对水质监测数据的异常检测。在物联网水质监测数据集上的实验结果表明,该算法能有效检测出异常数据,F1值为0.875,性能优于当前无监督异常检测领域常用算法。该算法对于处理物联网水质监测数据具有实际应用价值,此外,还可以应用于其他领域的海量物联网监测数据的异常检测,例如气象、环境等领域。
  • 人工智能与模式识别
    更藏措毛, 黄鹤鸣, 杨毅杰
    计算机工程. 2024, 50(6): 138-147. https://doi.org/10.19678/j.issn.1000-3428.0067970
    摘要 (200) PDF全文 (269) HTML (12)   可视化   收藏
    在语音增强中,常用自编码器结构自动提取特征,但这样得到的特征单一或者冗余且不能较好地捕获语音信号的上下文依赖关系。因此,提出一种融合多尺度特征和上下文信息的语音增强方法MSF-CI。首先,利用多尺度卷积块提取语音信号的多尺度特征,解决特征单一问题;其次,利用注意力机制关注所提取特征的空间与通道关键信息,解决特征冗余问题;最后,使用门控卷积循环神经网络学习语音信号中跨度较长的上下文依赖关系,并通过门控线性单元提高该网络的非线性学习能力,从而提高模型的泛化性。实验结果表明,MSF-CI在低信噪比和不同噪声环境下增强语音信号的语音感知质量、短时客观可懂度等多个指标上均优于GRN、DPT-FSNet、U-Net等同类的单通道语音增强模型。在信噪比为0 dB时,该方法的平均语音感知质量和平均语音客观可懂度达到1.49和0.761。在构建的安多藏语语料库上验证模型的泛化性,平均语音感知质量和平均语音客观可懂度相对于噪声提高了20.7%和11.3%,MSF-CI模型不仅可以提升语音的质量与可理解度,而且具有较优的泛化性。
  • 人工智能与模式识别
    李子杰, 周菊香, 韩晓瑜, 甘健侯, 鹿泽光, 王俊
    计算机工程. 2024, 50(6): 77-85. https://doi.org/10.19678/j.issn.1000-3428.0067528
    摘要 (194) PDF全文 (442) HTML (12)   可视化   收藏
    知识追踪是人工智能技术与教育相结合的新兴领域,旨在通过学生过去完成习题的交互序列对学生的知识状态进行评估,是实现大规模个性化学习服务的关键核心技术。随着深度学习在计算机视觉、自然语言处理、推荐系统等领域的广泛应用,知识追踪领域也出现了大量基于神经网络的方法,简称深度知识追踪(DKT)模型。针对目前已有DKT模型在可解释性和准确性方面的不足,提出一种序列特征与学习过程融合的知识追踪模型SLKT,模型包括知识状态模块、序列特征模块、预测模块。知识状态模块用以模拟学生学习过程,序列特征模块捕捉学习者近期学习状况。通过序列特征和学习过程的融合,有效解决了基于知识状态建模方法无法考虑学习者近期学习状况的问题,同时提出一种带约束的动态Q矩阵表示练习和知识点之间的关系,从而更好地进行学习者学习过程建模,在确保较好可解释性的同时有效提升模型的准确性。在3个知识追踪领域公共数据集上的实验结果表明,相比DKT、动态键值记忆网络(DKVMN)、自注意力的知识追踪(SAKT)、卷积知识追踪(CKT)等深度追踪模型,SLKT模型在曲线下面积(AUC)、准确率指标评估中表现较优。
  • 人工智能与模式识别
    陈佳玉, 王元龙, 张虎
    计算机工程. 2024, 50(6): 86-93. https://doi.org/10.19678/j.issn.1000-3428.0068081
    摘要 (200) PDF全文 (299) HTML (9)   可视化   收藏
    预训练语言模型在大规模训练数据和超大规模算力的基础上,能够从非结构化的文本数据中学到大量的知识。针对三元组包含信息有限的问题,提出利用预训练语言模型丰富知识的问题生成方法。首先,利用预训练语言模型中丰富的知识增强三元组信息,设计文本知识生成器,将三元组中的信息转化为子图描述,丰富三元组的语义;然后,使用问题类型预测器预测疑问词,准确定位答案所在的领域,从而生成语义正确的问题,更好地控制问题生成的效果;最后,设计一种受控生成框架对关键实体和疑问词进行约束,保证关键实体和疑问词同时出现在问题中,使生成的问题更加准确。在公开数据集WebQuestion和PathQuestion中验证所提模型的性能。实验结果表明,与现有模型LFKQG相比,所提模型的BLUE-4、METEOR、ROUGE-L指标在WebQuestion数据集上分别提升0.28、0.16、0.22个百分点,在PathQuestion数据集上分别提升0.8、0.39、0.46个百分点。
  • 热点与综述
    熊世强, 何道敬, 王振东, 杜润萌
    计算机工程. 2024, 50(5): 1-15. https://doi.org/10.19678/j.issn.1000-3428.0067782
    摘要 (778) PDF全文 (956) HTML (79)   可视化   收藏
    联邦学习(FL)是一种新兴的分布式机器学习技术,只需将数据留在本地即可通过各方协作训练一个共有模型,解决了传统机器学习中数据难以采集和隐私安全的问题。随着联邦学习技术的应用和发展,相关研究发现联邦学习仍可能受到各类攻击。为了确保联邦学习的安全性,研究联邦学习中的攻击方式及相应的隐私保护技术显得尤为重要。首先介绍了联邦学习的背景知识及相关定义,总结概括了联邦学习的发展历程及分类;接着阐述了联邦学习的安全三要素,从基于安全来源和基于安全三要素2个角度分类概述了联邦学习中的安全问题及研究进展;然后对隐私保护技术进行分类,结合相关研究应用综述了联邦学习中安全多方计算(SMC)、同态加密(HE)、差分隐私(DP)、可信执行环境(TEE)4种常用隐私保护技术;最后对联邦学习的未来研究方向进行展望。
  • 人工智能与模式识别
    孙文洁, 李宗民, 孙浩淼
    计算机工程. 2024, 50(5): 62-70. https://doi.org/10.19678/j.issn.1000-3428.0067919
    摘要 (364) PDF全文 (639) HTML (29)   可视化   收藏
    如何在部分可观测的情况下实现智能体之间的协同配合是多智能体强化学习(MARL)中的一个重要问题。值函数分解方法解决了信用分配问题,是一种实现多智能体之间协同配合的有效方法,然而在现有的值函数分解方法中,智能体个体动作值函数仅取决于局部信息,不允许智能体之间进行显式的信息交换,阻碍了这一系列算法的性能,使其无法适用于复杂场景。为了解决这一问题,在值函数分解方法中引入智能体间的通信,为智能体提供有效的非局部信息以帮助其理解复杂环境。在此基础上,提出一个基于图神经网络的分层通信模型,通过图神经网络提取相邻智能体之间需要交换的有用信息,同时模型能够实现从非通信向充分通信过渡,在通信范围有限的情况下实现全局合作,适用于现实世界中通信范围受约束的情况。在星际争霸Ⅱ多智能体挑战赛(SMAC)环境和捕食者-猎物(PP)环境下进行实验,结果表明,在SMAC的4个不同场景下,该方法与QMIX、VBC等基线算法相比平均胜率提升2~40个百分点,并且能够有效解决非单调环境下的捕食者-猎物问题。
  • 人工智能与模式识别
    傅明建, 郭福强
    计算机工程. 2024, 50(5): 91-99. https://doi.org/10.19678/j.issn.1000-3428.0068112
    摘要 (266) PDF全文 (357) HTML (19)   可视化   收藏
    无信号灯左转路口是自动驾驶场景中最为危险的场景之一,如何实现高效安全的左转决策是自动驾驶领域的重大难题。深度强化学习(DRL)算法在自动驾驶决策领域具有广阔应用前景。但是,深度强化学习在自动驾驶场景中存在样本效率低、奖励函数设计困难等问题。提出一种基于专家先验的深度强化学习算法(CBAM-BC SAC)来解决上述问题。首先,利用SMARTS仿真平台获得专家先验知识;然后,使用通道-空间注意力机制(CBAM)改进行为克隆(BC)方法,在专家先验知识的基础上预训练模仿专家策略;最后,使用模仿专家策略指导深度强化学习算法的学习过程,并在无信号灯路口左转决策中进行验证。实验结果表明,基于专家先验的DRL算法比传统的DRL算法更具优势,不仅可以免去人为设置奖励函数的工作量,而且可以显著提高样本效率从而获得更优性能。在无信号灯路口左转场景下,CBAM-BC SAC算法与传统DRL算法(SAC)、基于传统行为克隆的DRL算法(BC SAC)相比,平均通行成功率分别提高了14.2和2.2个百分点。
  • 人工智能与模式识别
    代巍, 王丰羽, 冀常鹏
    计算机工程. 2024, 50(5): 120-127. https://doi.org/10.19678/j.issn.1000-3428.0067847
    摘要 (178) PDF全文 (220) HTML (15)   可视化   收藏
    方面级情感分析旨在检测给定方面句子的情感极性。现有研究大多在句法依存树上构造图卷积网络,以获取方面词与上下文之间的句法信息。然而这类方法存在提取信息不够丰富、缺乏对句子中情感信息的挖掘等问题。针对上述问题,提出基于情感增强与双图卷积网络的方面级情感分析模型。该模型由双通道图卷积网络组成,旨在挖掘句子中的情感信息、句法信息和语义信息。利用位置信息和情感知识在依存树上构造情感增强依存图,并以此构建情感增强图卷积网络,增强方面词与上下文之间的情感依赖关系,同时挖掘句子中丰富的句法信息特征。构建基于多头注意力机制的图卷积网络,获取句子中的语义特征信息。对双图卷积网络的输出特征进行掩码、平均池化和拼接等操作,并通过情感分类层进行分类。实验结果表明,该模型与经典的图卷积网络模型(ASGCN)相比,在Restaurant、Laptop和Twitter数据集上的准确率和F1值分别提升3.43和5.69、3.13和3.92、3.57和4.02个百分点,具有较好的情感分类性能。
  • 网络空间安全
    卢晓天, 朴春慧, 杨兴雨, 白英杰
    计算机工程. 2024, 50(5): 167-181. https://doi.org/10.19678/j.issn.1000-3428.0067967
    摘要 (186) PDF全文 (251) HTML (23)   可视化   收藏
    在实现隐私保护的同时提高数据可用性是高维结构化数据发布研究中的挑战性问题,经典算法PrivBayes针对该问题提供了一种解决方案。为进一步减少计算开销、提高数据可用性,提出基于贝叶斯网络的差分隐私数据发布算法ELPrivBayes。分析贝叶斯网络结构学习阶段的理论计算开销,构建存储属性之间互信息的相关矩阵,避免结构学习算法迭代过程中互信息的冗余计算,降低了时间复杂度。基于平均互信息优化了节点进入贝叶斯网络的顺序,提高结构学习迭代过程中指数机制贡献的互信息期望值,进而提高生成数据集与原始数据集的统计近似度,并实证分析网络结构质量对首节点选择的低敏感性。在4个典型数据集上的实验结果表明,与经典算法PrivBayes及其改进方案相比较,结构学习阶段的计算开销降低了97%~99%,基于指数机制捕获的互信息提高了14%~67%,生成数据集与原始数据集的平均变差距离降低了32%~40%,构建的支持向量机(SVM)分类器的准确率提高了4%~5%,并且当ε≤0.8时,采用ELPrivBayes算法生成数据的可用性提升更为显著。
  • 智慧交通
    陈伟, 王晓龙, 张晏玮, 安国成, 江波
    计算机工程. 2024, 50(4): 11-19. https://doi.org/10.19678/j.issn.1000-3428.0068901
    摘要 (347) PDF全文 (500) HTML (48)   可视化   收藏

    在高速公路服务区违停检测过程中光照、天气变化等复杂环境会使车辆检测精度急剧下降, 同时摄像机拍摄角度、车体高度等因素会增加车辆违停检测的误报率和漏报率。为此, 提出一种基于改进YOLOv8的高速公路服务区违停检测算法。在YOLOv8网络模型的特征金字塔池化层中, 构建膨胀空间金字塔池化(DSPP)模块和基于分支注意力机制的膨胀空间金字塔池化(DSPPA)模块, 减少特征提取网络中深层语义信息的丢失, 同时利用DSPPA中的分支注意力(BA)机制为不同感受野分支特征赋予不同的权重, 使模型更关注与目标尺寸相适应的特征。设计基于全局匹配的停车位分配策略, 有效降低了视角倾斜、车辆重叠遮挡等情况下违规占用停车位的误报率与漏报率。实验结果表明, 改进算法的违停检测误报率从15%下降至8%, 违停检测漏报率从7.5%下降至6.1%, 具有较好的车辆违停检测效果。

  • 热点与综述
    连哲, 殷雁君, 云飞, 智敏
    计算机工程. 2024, 50(3): 16-27. https://doi.org/10.19678/j.issn.1000-3428.0067427
    摘要 (615) PDF全文 (1532) HTML (87)   可视化   收藏

    基于深度学习的自然场景文本检测技术已成为计算机视觉和自然语言处理领域的重要研究方向,不仅具有广泛的应用前景,而且也为研究人员提供了一个探索神经网络模型和算法的新平台。首先,介绍自然场景文本检测技术的相关概念、研究背景和发展现状。接着,分析近年来基于深度学习的文本检测方法并将其分为基于检测框、基于分割、基于两者混合、其他4类,阐述4类经典和主流方法的基本思路和主要算法流程,归纳总结不同方法的使用机制、适用场景、优劣点及仿真实验结果和环境设置,明确不同方法之间的关联关系。然后,介绍自然场景文本检测的常用公共数据集和文本检测性能评估方法。最后,指出基于深度学习的自然场景文本检测技术目前所面临的主要挑战并对其未来发展方向进行展望。

  • 网络空间安全
    宋华伟, 李升起, 万方杰, 卫玉萍
    计算机工程. 2024, 50(3): 166-172. https://doi.org/10.19678/j.issn.1000-3428.0067791
    摘要 (702) PDF全文 (931) HTML (54)   可视化   收藏

    联邦学习能够在不泄露数据隐私的情况下合作训练全局模型,但这种协作式的训练方式在现实环境下面临参与方数据非独立同分布(Non-IID)的挑战:模型收敛慢、精度降低的问题。许多现有的联邦学习方法仅从全局模型聚合和本地客户端更新中的一个角度进行改进,难免会引发另一角度带来的影响,降低全局模型的质量。提出一种分层持续学习的联邦学习优化方法(FedMas)。FedMas基于分层融合的思想,首先,采用客户端分层策略,利用DBSCAN算法将相似数据分布的客户端划分到不同的层中,每次仅挑选某个层的部分客户端进行训练,避免服务器端全局模型聚合时因数据分布不同产生的权重分歧现象;进一步,由于每个层的数据分布不同,客户端在局部更新时结合持续学习灾难性遗忘的解决方案,有效地融合不同层客户端数据间的差异性,从而保证全局模型的性能。在MNIST和CIFAR-10标准数据集上的实验结果表明,FedMas与FedProx、Scaffold和FedCurv联邦学习算法相比,全局模型测试准确率平均提高0.3~2.2个百分点。

  • 图形图像处理
    徐芳芯, 樊嵘, 马小陆
    计算机工程. 2024, 50(3): 250-258. https://doi.org/10.19678/j.issn.1000-3428.0067741
    摘要 (361) PDF全文 (632) HTML (48)   可视化   收藏

    针对拥挤行人检测场景下检测算法容易产生漏检与误检的问题,提出一种改进的YOLOv7拥挤行人检测算法。在骨干网络中引入BiFormer视觉变换器和改进的高效层聚合网络(RC-ELAN)模块,通过自注意力机制与注意力模块使骨干网络更多聚焦于被遮挡行人的重要特征,有效缓解了目标特征缺失对检测造成的负面影响。采用基于双向特征金字塔网络思想的改进颈部网络,通过转置卷积和改进的Rep-ELAN-W模块使模型可以高效利用中低维特征图中的小目标特征信息,有效提升了模型的小目标行人检测性能。引入高效的完全交并比损失函数,使模型可以进一步收敛至更高精度。在含有大量小目标遮挡行人的WiderPerson数据集上的实验结果表明,与YOLOv7、YOLOv5、YOLOX算法相比,改进的YOLOv7算法的交并比阈值分别取0.5和0.5~0.95时的平均精准度提升了2.5和2.8、9.9和7.1、12.3和10.7个百分点,可较好地应用于拥挤行人检测场景。

  • 图形图像处理
    史艳琼, 查昭, 张文亮, 戴尔愉, 陈中
    计算机工程. 2024, 50(3): 233-241. https://doi.org/10.19678/j.issn.1000-3428.0067143
    摘要 (228) PDF全文 (542) HTML (15)   可视化   收藏

    聚焦形貌恢复是非接触式三维重建领域中的重要技术手段。由于环境的影响和相机本身的限制,图像采集过程中会不可避免地产生噪声信息,影响重建精度。针对该问题,提出一种高精度、抗噪声的聚焦形貌恢复算法。使用聚焦评价函数对离焦序列图像进行评价,得到聚焦评价序列图像,并使用高斯拟合峰值法定位像素聚焦位置获得初始深度图。在此基础上,通过像素的聚焦评价曲线与灰度曲线之间的相似度衡量深度估计置信度,生成初始深度图的置信图,并将置信图作为引导图对初始深度图进行引导滤波,得到优化后的深度图。使用多组仿真离焦序列图像与真实显微离焦序列图像对所提方法进行性能验证, 实验结果表明:所提方法在仿真与真实离焦序列中均能表现出优良的三维重建效果,在真实数据实验中,所提方法的所有指标均优于基于深度图优化的方法,与传统方法相比均方根误差分别降低64.8%和47.3%以上,相关系数分别提高2.18%和6.35%以上,具有更高的精度和更强的抗噪性,能有效提高聚焦形貌恢复精度。

  • 开发研究与工程应用
    赵佳圆, 张玉茹, 苏晓东, 徐红岩, 李世洲, 张玉荣
    计算机工程. 2024, 50(3): 317-325. https://doi.org/10.19678/j.issn.1000-3428.0067134
    摘要 (190) PDF全文 (460) HTML (16)   可视化   收藏

    人体姿态估计任务需要利用视觉线索和关节间的解剖关系来定位关键点,但基于卷积神经网络的方法难以关注远程上下文线索和建模远距离关节之间的依赖关系。为此,提出一种基于注意力机制的隐式建模方法,通过多阶段迭代计算关节之间的特征相关性来隐式建模关键点间的约束关系,消除卷积神经网络的局部操作,扩大网络的感受野,建模远距离关节之间的依赖关系。为了解决网络在训练过程中可能弱化不可见关键点的问题,采用焦点损失函数,使网络更关注于复杂的关键点。使用目前精度最高的特征提取高分辨率网络(HRNet)和经典特征提取残差网络(ResNet)作为主干网络进行实验,结果表明,在同等实验条件下,隐式建模方法可以提高人体姿态估计网络的性能,在MPII和MSCOCO人体姿态估计基准数据集上,以HRNet网络为主干网络的算法相较于原网络,精度分别提升了1.7%和2.6%。

  • 热点与综述
    李浩阳, 贺小伟, 王宾, 吴昊, 尤琪
    计算机工程. 2024, 50(2): 43-50. https://doi.org/10.19678/j.issn.1000-3428.0066399
    摘要 (554) PDF全文 (768) HTML (40)   可视化   收藏

    负载预测是云计算资源管理中的重要组成部分,准确预测云资源的使用情况可提高云平台性能及防止资源浪费,然而云计算资源使用的动态性和不确定性使得负载预测较为困难,尽管Informer在时序预测领域取得了较好的效果,但未对时间的因果依赖关系加以限制造成未来信息泄露,也未考虑网络深度的增加导致模型性能下降的问题。为解决上述问题,提出一种基于改进Informer的多步负载预测模型(Informer-DCR)。将编码器中各注意力块之间的正则卷积替换为扩张因果卷积,使深层网络中的高层能够接收更大范围的输入信息来提高模型预测精度,并保证时序预测过程的因果性。在编码器中添加残差连接,使网络中低层的输入信息直接传到后续的高层,解决了深层网络退化问题。实验结果表明,Informer-DCR模型在不同预测步长下的平均绝对误差比Informer、时间卷积网络等主流预测模型降低了8.4%~40.0%,并且在训练过程中表现出比Informer更好的收敛性。

  • 热点与综述
    雷斗威, 何德彪, 罗敏, 彭聪
    计算机工程. 2024, 50(2): 15-24. https://doi.org/10.19678/j.issn.1000-3428.0067167
    摘要 (223) PDF全文 (425) HTML (17)   可视化   收藏

    量子计算的迅速发展可能对当前广泛使用的公钥密码算法造成严重威胁。格密码因优秀的抗量子安全性和高效的计算效率在后量子密码中占据重要地位。美国国家标准技术研究院于2022年5月公布4个后量子密码标准,其中3个是格密码算法,Kyber算法便是其中之一。随着后量子密码标准的确定,Kyber算法高效实现的需求日益增加。基于512位高级向量扩展(AVX512),对Kyber算法进行优化与高速并行实现。使用惰性模约减、优化的蒙哥马利模约减及优化的快速数论变化等技术,充分利用计算机的存储空间,减少大量不必要的模约减操作,提高多项式计算的效率与并行性。采用冗余比特技术,增强多项式抽样过程中比特的并行处理能力。通过AVX512的512 bit位宽和8路并行实现哈希运算,并对其产生的伪随机比特串进行合理调度,充分发挥并行性能。基于AVX512指令集高速并行实现Kyber上的多项式计算和抽样,并进一步实现整个Kyber公钥加密方案。性能测试结果表明,与C语言实现相比,基于AVX512实现的密钥生成和加密算法获得了10~16倍的加速,解密算法获得了约56倍的加速。

  • 热点与综述
    孙毅, 王会梅, 鲜明, 向航
    计算机工程. 2024, 50(2): 25-32. https://doi.org/10.19678/j.issn.1000-3428.0067396
    摘要 (322) PDF全文 (429) HTML (17)   可视化   收藏

    Kubeflow将机器学习和云计算技术两个技术领域相结合,集成了大量的机器学习工具,为生产级的机器学习平台落地提供了可行方案。机器学习通常依托图形处理器(GPU)等专用处理器来提高训练和推理速度,随着云计算集群规模的动态调整,不同计算架构的云计算节点可以灵活地加入/退出集群,传统的轮询调度策略已无法满足动态调整下的异构算力资源调度。为解决Kubeflow平台异构算力的分配优化问题,提高平台资源利用率,实现负载均衡,提出一种基于云的图形处理器-中央处理器(CPU-GPU)异构算力调度策略,采用量化后的负载均衡度和优先级两个判断指标,细颗粒度化显存分配,将计算资源挂载给对应的Pod以实现算力资源的细颗粒度调度。根据集群各节点算力资源设计资源权重矩阵,利用改进的遗传算法获取Pod的最优部署方案,保证多个任务的执行。实验结果表明,该调度策略对并行任务支持效果较好,且在资源请求溢出的情况下,能够按照优先级调度执行并实现最优的负载,与平台原生策略相比,资源细化程度提升了一个数量级,集群负载均衡也有较为显著的提升。

  • 热点与综述
    吴嘉鑫, 孙一飞, 吴亚兰, 武继刚
    计算机工程. 2024, 50(2): 59-67. https://doi.org/10.19678/j.issn.1000-3428.0066761
    摘要 (192) PDF全文 (450) HTML (16)   可视化   收藏

    无人机凭借其灵活的机动性以及高数据传输速率,被广泛应用于大范围离散节点的数据采集工作,其机载能量的有限性也使得无人机能耗优化成为当前研究热点。然而,当环境中存在窃听节点时,如何在保障多个离散数据节点数据安全传输前提下优化无人机的能量消耗具有一定的挑战性。基于此,引入中继节点和安全容量,提出面向安全传输的低能耗无人机轨迹优化算法,力求从物理层面保障数据的安全传输。对无人机与地面节点的信道模型、无人机与数据节点之间的安全容量以及无人机飞行通信能耗进行建模。将问题形式化描述为以最小化无人机能耗为目标、数据节点与无人机之间的数据安全传输为主要约束的非确定性多项式难解优化问题。为解决该问题,对问题进行子问题分解,采用自组织映射方法以及定制的粒子群算法分别对无人机访问数据节点的最优次序以及在数据节点周边悬停的最佳位置进行求解,并根据现有工作提出3种基准方案进行性能对比。仿真实验结果表明,当中继节点的能量收集电路最大输出功率变化时,所提的优化算法在降低无人机总能耗方面相比BASE_D、BASE_M、BASE_R 3种基准方案分别平均提高7.25%、8.59%、11.57%。此外,在安全容量实现率方面,所提算法的性能均优于对比方案,例如,当安全容量阈值从0.001~0.500变化时,所提算法相比基准方案BASE_M平均提高23.45%。

  • 网络空间安全
    刘帅威, 李智, 王国美, 张丽
    计算机工程. 2024, 50(2): 180-187. https://doi.org/10.19678/j.issn.1000-3428.0067077
    摘要 (856) PDF全文 (1040) HTML (47)   可视化   收藏

    对抗攻击与防御是计算机安全领域的一个热门研究方向。针对现有基于梯度的对抗样本生成方法可视质量差、基于优化的方法生成效率低的问题,提出基于Transformer和生成对抗网络(GAN)的对抗样本生成算法Trans-GAN。首先利用Transformer强大的视觉表征能力,将其作为重构网络,用于接收干净图像并生成攻击噪声;其次将Transformer重构网络作为生成器,与基于深度卷积网络的鉴别器相结合组成GAN网络架构,提高生成图像的真实性并保证训练的稳定性,同时提出改进的注意力机制Targeted Self-Attention,在训练网络时引入目标标签作为先验知识,指导网络模型学习生成具有特定攻击目标的对抗扰动;最后利用跳转连接将对抗噪声施加在干净样本上,形成对抗样本,攻击目标分类网络。实验结果表明:Trans-GAN算法针对MNIST数据集中2种模型的攻击成功率都达到99.9%以上,针对CIFAR10数据集中2种模型的攻击成功率分别达到96.36%和98.47%,优于目前先进的基于生成式的对抗样本生成方法;相比快速梯度符号法和投影梯度下降法,Trans-GAN算法生成的对抗噪声扰动量更小,形成的对抗样本更加自然,满足人类视觉不易分辨的要求。

  • 图形图像处理
    祝冰艳, 陈志华, 盛斌
    计算机工程. 2024, 50(1): 216-223. https://doi.org/10.19678/j.issn.1000-3428.0066941
    摘要 (841) PDF全文 (1336) HTML (81)   可视化   收藏

    随着遥感技术的快速发展,遥感图像检测被广泛应用于农业、军事、国防安全等众多领域。遥感图像相较于传统图像检测存在诸多难点,如何实现高效精准的遥感图像检测成为该领域的研究热点。针对遥感图像检测中存在的计算复杂度高、正负样本不平衡、目标尺度小等问题,提出一种基于感知增强Swin Transformer的遥感图像检测网络,以提升遥感图像检测性能。在主干网络设计过程中,利用Swin Transformer分层设计和移动窗口的优点有效减小计算复杂度,同时插入空间局部感知块,加强网络对局部相关性和结构信息的提取能力。设计区域分布回归损失为小目标分配更大的权重,解决了正负样本不平衡的问题,同时结合改进的IoU-aware分类损失消除不同分支之间的差距,降低分类和回归损失。在公共遥感数据集DOTA上的多组实验结果表明,该网络获得了78.47%的平均精度均值和10.8帧/s的检测速度,检测性能优于经典的目标检测网络Faster R-CNN、Mask R-CNN以及现有优秀的遥感图像检测网络,并且在各类不同尺度的目标上均具有较好的性能表现。

  • 人工智能与模式识别
    吴志强, 解庆, 李琳, 刘永坚
    计算机工程. 2024, 50(1): 91-100. https://doi.org/10.19678/j.issn.1000-3428.0066929
    摘要 (1171) PDF全文 (1479) HTML (121)   可视化   收藏

    已有的图神经网络(GNN)推荐算法大多利用用户-项目交互图的节点编号信息进行训练,学习用户-项目节点的高阶联系去丰富节点表示,但忽略了用户对不同模态信息的偏好,没有利用项目的图片、文本等模态信息,或对于不同模态特征的融合简单相加,不能区分用户对不同模态信息的偏好。针对上述问题,提出多模态融合的GNN推荐模型。首先针对单个模态,结合用户-项目交互二部图构建单模态图网络,在单模态图中学习用户对此模态信息的偏好;然后利用GAT聚合邻居信息,丰富本节点表示,同时根据门控循环单元决定是否聚合邻居信息,达到去噪效果;最后将各个模态图学习到的用户、项目表示通过注意力机制融合得到最终表示并送入预测模块。在MovieLens-20M、H&M两个数据集上的实验结果表明:多模态信息、注意力融合机制能有效提升推荐的准确度,算法模型在Precision@K、Recall@K和NDCG@K 3个指标上相较于基线最优算法均有显著提升;当评估指标K值选取10时,Precision@10、Recall@10和NDCG@10在两个数据集上分别提升了4.67%、2.42%、2.03%和2.49%、5.24%、2.05%。

  • 热点与综述
    刘颖, 马玉鹏, 赵凡, 王轶, 蒋同海
    计算机工程. 2024, 50(1): 39-49. https://doi.org/10.19678/j.issn.1000-3428.0067004
    摘要 (462) PDF全文 (609) HTML (27)   可视化   收藏

    Hyperledger Fabric是一种国内外广泛使用的联盟链框架,在基于Fabric技术的一些业务中具有协同组织众多、交易操作频繁、事务冲突增加等特点。Fabric采用的多版本并发控制技术能够在一定程度上解决部分交易冲突,提升系统并发性,但其机制不完善,会出现部分交易数据无法正常上链存储的问题。为了实现海量交易数据完整、高效、可信的上链存储,提出一种基于Fabric预言机的数据上链预处理机制。设计海量数据冲突预处理(MCPP)方法,通过检测、监听、延时提交、事务加锁、重排序缓存等方式实现主键冲突交易数据的完整上链。引入数据传输保障措施,在传输过程中利用非对称加密技术防止恶意节点伪造认证信息,确保交易数据链外处理前后的一致性。通过理论分析和实验结果表明,该机制可有效解决联盟链平台中海量交易数据上链时的并发冲突问题,当交易数据规模达到1 000和10 000时,MCPP的时效性比LMLS提高了38%和21.4%,且成功率接近100%,具有高效性和安全性,同时在无并发冲突情况下不影响Fabric系统性能。

  • 图形图像处理
    蒋心璐, 陈天恩, 王聪, 赵春江
    计算机工程. 2024, 50(1): 232-241. https://doi.org/10.19678/j.issn.1000-3428.0067030
    摘要 (488) PDF全文 (1180) HTML (38)   可视化   收藏

    智能化害虫检测是目标检测技术在农业领域的重要应用,可以有效提高害虫测报工作效率和可靠性,保障农作物产量和质量。在诱虫灯、粘虫板等固定式诱捕装置下,图像背景简单、光照条件稳定、害虫特征显著易于提取,害虫检测可以达到较高的准确率,但其应用场景固定,检测范围局限于设备周围,无法适应复杂的田间环境。针对田间环境下图像背景复杂和害虫尺寸小带来的难检和漏检问题,提出一种改进YOLOv5的小目标害虫检测算法Pest-YOLOv5,以提高害虫测报的灵活性。在特征提取网络中增加坐标注意力机制,通过结合空间和通道信息,增强对小目标害虫特征的提取能力,在颈部连接部分使用双向特征金字塔网络结构,通过融合多尺度特征,缓解多次卷积带来的小目标信息丢失问题。在此基础上,使用SIoU和变焦损失函数计算损失值,同时通过实验得到最优分类损失权重系数,使模型更关注分类困难的目标样本。在公开数据集AgriPest上的实验结果表明,Pest-YOLOv5模型mAP0.5和召回率分别为70.4%和67.8%,优于原YOLOv5s模型、SSD和Faster R-CNN等经典目标检测模型。与YOLOv5s模型相比,Pest-YOLOv5模型将mAP0.5、mAP0.50:0.95和召回率分别提高8.1%、7.9%和12.8%,改善了难检和漏检情况。

  • 热点与综述
    乔艺萌, 荆一楠, 张寒冰
    计算机工程. 2024, 50(1): 30-38. https://doi.org/10.19678/j.issn.1000-3428.0066743
    摘要 (219) PDF全文 (435) HTML (21)   可视化   收藏

    由于在大规模数据集上执行精确查询耗时较长,因此近似查询处理(AQP)技术常被用于在线分析处理,目的是以较短的交互延迟返回查询结果,并尽可能地降低查询误差。现有的学习型AQP方法与底层数据解耦,将I/O密集型计算转化为CPU密集型计算,但是由于计算资源的限制,该类方法通常基于随机的数据样本进行模型训练,此类训练数据会引起稀有群组缺失问题,导致模型预测准确性不高。针对上述问题,提出一种基于分层样本学习的混合型和积网络模型,并基于该模型设计一种AQP框架。分层样本能够有效避免稀有群组缺失现象,基于该样本训练的模型预测准确性大幅提升。此外,针对数据动态更新的情况,提出一种模型自适应更新策略,使得模型能够及时检测数据偏移现象并自适应地执行更新。实验结果表明,与基于抽样和基于机器学习的AQP方法相比,该模型在真实数据集和合成数据集上的平均相对误差分别约降低18.3%和2.2%,在数据动态更新的场景下,其准确性和查询时延均呈现出良好的稳定性。

  • 计算机系统前沿技术
    方燕飞, 刘齐, 董恩铭, 李雁冰, 过锋, 王谛, 何王全, 漆锋滨
    计算机工程. 2023, 49(12): 10-24. https://doi.org/10.19678/j.issn.1000-3428.0066548
    摘要 (374) PDF全文 (876) HTML (63)   可视化   收藏

    当前众核已成为构建高性能计算(HPC)超级计算机的主流微处理器架构,为HPC领域E级超算提供强大的算力。随着众核处理器片上集成的运算核心数量不断增加,众多核心对存储资源竞争愈加激烈,“访存墙”问题越来越突出。众核片上存储层次是缓解“访存墙”问题并帮助HPC应用更好地发挥众核处理器的计算优势以提升实际应用性能的重要结构。众核片上存储层次的设计对众核片上系统性能、功耗和面积具有重要影响,是众核结构设计中的重要环节,也是业界的研究热点。由于众核芯片发展历史和片上微体系结构设计技术的不同,以及所面向的应用领域需求不同等原因,目前的HPC主流众核片上存储层次结构并不单一,但从横向比较和各处理器自身纵向发展趋势,以及从HPC与数据科学、机器学习不断融合发展带来的应用需求变化来看,SPM+Cache的混合结构最可能成为今后HPC E级超算系统众核处理器片上存储层次设计的主流选择。在面向E级计算的软件和算法层面,开展针对众核存储层次特点的设计与优化,可以帮助HPC应用更好地发挥众核处理器的计算优势,从而有效提升实际应用性能,因此面向众核片上存储层次特点的软件及算法设计与优化技术也是业界的研究热点之一。首先按照不同的组织方式将片上存储层次分为多级Cache结构、SPM结构和SPM+Cache混合结构,并总结分析3种结构的优缺点。然后分析国际主流GPU、同构众核、国产众核等面向主流E级超算系统的众核处理器片上存储层次设计现状与发展趋势。最后从众核LLC管理与缓存一致性协议、SPM空间管理与数据移动优化、SPM+Cache混合结构的全局视角优化等角度综述国际上的存储层次设计与优化相关软硬件技术的研究现状。在此基础上,从软硬件及算法设计等不同角度展望了片上存储层次的未来研究方向。

  • 人工智能与模式识别
    李奇儒, 耿霞
    计算机工程. 2023, 49(12): 111-120. https://doi.org/10.19678/j.issn.1000-3428.0066348
    摘要 (938) PDF全文 (1336) HTML (83)   可视化   收藏

    传统深度Q网络(DQN)算法通过融合深度神经网络和强化学习方法,解决了Q-learning算法在应对复杂环境时出现的维数灾难问题,被广泛应用于移动机器人的路径规划,但传统DQN算法的网络收敛速度较慢,路径规划效果较差,难以在较少的训练回合内获取最优路径。为了解决上述问题,提出一种改进的ERDQN算法。通过记录重复状态出现的频率,利用该频率重新计算Q值,使得在网络训练的过程中一种状态重复出现的次数越多,下一次出现该状态的概率越低,从而提高机器人对环境的探索能力,在一定程度上降低了网络收敛于局部最优的风险,减少了网络收敛的训练回合。根据机器人移动方向和机器人与目标点的距离,重新设计奖励函数。机器人在靠近目标点时能够获得正奖励,远离目标点时能够获得负奖励,并通过当前机器人的移动方向和机器人与目标点的距离调整奖励的绝对值,从而使机器人能够在避开障碍物的前提下规划出更优路径。实验结果表明,与DQN算法相比,ERDQN算法的平均得分提高了18.9%,规划出的路径长度和回合数减少了约20.1%和500。上述结果证明了ERDQN算法能够有效提高网络收敛速度及路径规划性能。

  • 计算机系统前沿技术
    叶钧超, 徐聪, 黄尧, 柴志雷
    计算机工程. 2023, 49(12): 35-45. https://doi.org/10.19678/j.issn.1000-3428.0066260
    摘要 (264) PDF全文 (469) HTML (21)   可视化   收藏

    脉冲神经网络作为第三代神经网络,其工作机理与生物大脑更接近,层内连接与反向连接的复杂拓扑结构具有解决复杂问题的潜力。神经元和突触是脉冲神经网络中最基本的计算单元,相比于带泄露积分触发神经元模型,Izhikevich神经元模型能通过模拟出更多的生物脉冲现象来支持更广泛的类脑仿真计算,但Izhikevich神经元模型的计算复杂度更高,基于其搭建的脉冲神经网络存在低性能、高功耗的问题。提出一种基于FPGA的Izhikevich神经元定制计算方法。首先,通过研究脉冲神经网络中Izhikevich神经元各参数的取值范围以及平衡膜电位的相对误差与资源消耗,设计一套混合精度的定点化方案;其次,针对单个神经元,通过平衡神经元更新计算方程的数据路径实现最小化流水;再次,针对整体脉冲神经网络,设计并行度可扩展的计算架构以适应不同规模的FPGA平台;最后,把该定制计算方法用于经典的NEST仿真器加速。实验结果表明,相比于i7-10700 CPU,经典的丘脑外侧膝状核网络模型和液体状态机模型在ZCU102上的性能平均提升2.26和3.02倍,能效比平均提升8.06和10.8倍。

  • 计算机系统前沿技术
    陈逸, 刘博生, 徐永祺, 武继刚
    计算机工程. 2023, 49(12): 1-9. https://doi.org/10.19678/j.issn.1000-3428.0066701
    摘要 (285) PDF全文 (579) HTML (56)   可视化   收藏

    深度卷积神经网络具有模型大、计算复杂度高的特点,难以部署到硬件资源有限的现场可编程门阵列(FPGA)中。混合精度卷积神经网络可在模型大小和准确率之间做出权衡,从而为降低模型内存占用提供有效方案。快速傅里叶变换作为一种快速算法,可将传统空间域卷积神经网络变换至频域,从而有效降低模型计算复杂度。提出一个基于FPGA的8 bit和16 bit混合精度频域卷积神经网络加速器设计。该加速器支持8 bit和16 bit频域卷积的动态配置,并可将8 bit频域乘法运算打包以复用DSP,用来提升计算性能。首先设计一个基于DSP的频域计算单元,支持8 bit和16 bit频域卷积运算,通过打包一对8 bit频域乘法以复用DSP,从而提升吞吐率。然后提出一个映射数据流,该数据流支持8 bit和16 bit计算两种形式,通过数据重用方式最大化减少冗余数据处理和数据搬运操作。最后使用ImageNet数据集,基于ResNet-18与VGG16模型对所设计的加速器进行评估。实验结果表明,该加速器的能效比(GOP与能耗的比值)在ResNet-18和VGG16模型上分别达到29.74和56.73,较频域FPGA加速器提升1.2~6.0倍。