图形图像处理
王舒梦, 徐慧英, 朱信忠, 黄晓, 宋杰, 李毅
在无人机(UAV)航拍中, 目标通常是密集分布、特征不明显的小目标, 且物体尺度变化较大。因此, 目标检测容易出现漏检和误检的问题。为了解决这些问题, 提出了一种基于改进YOLOv8n的航拍轻量化小目标检测算法: PECS-YOLO。该算法通过在Neck部分增加P2小目标检测层, 将浅层和深层的特征图进行拼接, 以更好地捕捉小目标的细节信息; 将轻量化卷积PartialConv引入全新的结构CSPPC(Cross Stage Partial PartialConv), 替换Neck网络中的C2f(Concatenation with Fusion), 实现模型轻量化; 引入SPPELAN(Spatial Pyramid Pooling with Efficient Layer Aggregation Network), 以有效地捕捉小目标特征; 通过在Neck部分每个检测头前加入压缩和激励(SE)注意力机制, 使网络更好地关注有用的通道, 减少复杂环境中背景噪声对小目标检测任务的干扰; 最后使用EfficiCIoU作为边界框损失函数, 将边界框的形状差异也考虑在内, 以增强模型对小目标的检测能力。实验结果表明: 相比YOLOv8n, PECS-YOLO目标检测算法在VisDrone2019-DET数据集上交并比为0.5的平均精度(mAP@0.5)提高了3.5%, 交并比为0.5∶0.95的平均精度(mAP@0.5∶0.95)提高了3.7%, 模型参数量减少了约25.7%, 检测速度提高了约65.2%。综上所述, PECS-YOLO模型适合于UAV航拍下的小目标检测任务。